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LIST OF SYMBOLS

= exponent for objective function term i and variable j
= exponent for term i, variable j, in constraint ]
= gpacecraft space debris area

= acceleration factor of primal penalty function for constraint 1
= spacecraft orientation factor

= coefficient for objective function term i

= coefficient for term i in constraint 1

= coefficient for posyseparable term i

= bumper material speed of sound

= projectile diameter

= geometric programming degree of difficulty
= non-normalized impact velocity distribution
= normalized impact velocity distribution

= space debris flux

= fraction of hyperspace for random search

= constraint 1

= spacecraft altitude

= spacecraft inclination

= number of independent variables

= right hand side of primal constraint 1

= wall material constant

= projectile mass
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= number of random search points

= number of terms in constraint 1

= number of terms in objective function

= positive integer value corresponding to variable j
= cumulative space debris flux

= number of walls penetrated (normal impact)
= total meteoroid flux

= number of constraints

= space debris growth rate

= required confidence for random search

= spacecraft probability of no penetration

= number of discrete variables

= discrete availability factor for variable j

= solar flux

= bumper/wall separation

= bumper thickness

= wall thickness

= mission duration

= projectile impact velocity

= maximum space debris impact velocity

= structure mass per unit area or weight

= acceleration factor of primal penalty function for discrete constraint 1

= dual variable corresponding to objective function term i

SAIC

= dual variable corresponding to term j in constraint 1
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[ ]n.i.

= binary factor of primal penalty function for constraint 1
= first dual variable for discrete constraint of variable j

= second dual variable for discrete constraint of variable j
= binary factor of primal penalty function for discrete constraint 1
= convergence parameter for penalty function

= initial exploratory step size for Hooke and Jeeves

= final exploratory step size for Hooke and Jeeves

= impact angle from surface normal

= dual objective function variable in constraint 1

= dual objective function

= primal penalty function

= bumper density

= wall density

= projectile mass density

= spacecraft inclination factor

= nearest integer of quantity in brackets

A 0 subscript denotes optimal value for a primal variable.

A * superscript denotes optimal value for a dual variable.
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1 INTRODUCTION

1.1 Problem Statement

Spacecraft designers have been concerned since the 1960’s about the effects of meteoroid
impacts on mission safety. Recent concems have extended to the space debris environment,
which typically displays more massive particles than the meteoroid environment for the same
risk level. Additionally, the higher exposure area-time product of future space missions (e.g.,
Space Station) poses a more critical design problem than current short term missions. Finally,
the inherent uncertainties in projectile ma:ss, vclociis', density, shape, and impact angle make
the traditional deterministic design approach impractical.

The engineering solution to this design problem has generally been to erect a bumper or
shield placed outboard from the spacecraft wall to disrupt/deflect the incoming projectiles. This
passive measure has resulted in significant structural weight savings relative to a single wall
concept with the same protective capability. The problem, then, is how to efficiently design
these protective structures so that the bumper disrupts the projectile without posing a lethality
problem to the wall protecting the crew and equipment.

Spacecraft designers have a number of tools at their disposal to aid in the design process.
These include hypervelocity impact testing, analytic impact predictors, and,hydrodynamic
codes. Perhaps the most widely accepted of these tools isimpact testing, which has the advantage
of providing actual spacecraft design verification. On the other hand, maximum test velocities
are currently limited (8 km/sec) relative to maximum space ciebris (about 15 km/sec) and
meteoroid (about 72 km/sec) velocities. Also, extensive testing is required to develop statis-

tically significant trends for the large number of parameters associated with hypervelocity

SAIC
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~_ involved in the selection of appropuate codes and code-spectﬁc parameters

impact. Hydrodynamic code analysis can overcome the velocity limitation problem. However,

this method is very computer (and time) intensive, and there is a fair amount of controversy

Ana]yue xmpact predjctors generally pmwde the best qmck-look estlmate of deSIgn

tradeoffs Thelr use is constramed by the hrmtatlons of the testmg from whlch they are

expenmentally denved the assum 'ons used in thelr theoreucal derxvauon or the regressxon

- mation that IS clearer than that obtamed from the exatmnanon of expenmental results

The most complete way to determme the characteristics of an analytlc impact predlctor
is through (nonlmear) optlmlzatxon of the protecuve structures desrgrl problem,jfo@glated,thh
: the predxctor of mterest Opnrmzauon techmques prov1de analyuc or numencal solunons
dependmg on the nature of the predtctor the problem formulanon and the techmque used.
1.2 Contract Purposfe,, B :

The purpose of thls contract 1s to prov1de Space Station FREEDOM protectlve structures
desxgn insight through the coupling of design/material requirements, hypervelocity impact

phenomenology, meteor01d and space debris environment sensmvmes optimization techniques

and operations research strategxes, and mission scenarios. Ma)or findmgs from contract

inception to the beginning of this study are detailed in References 100-1035 and are shown below:
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1.3 Study Goals S——— e

The goals of thrs study areto: . . -

.. The methodology presented in this study is sufﬁcxently general for appllcanonto various

spacecraft conﬁgumtwns and unpact envxronments The baselme scenano mvesugated is for

: the Space Stanon Core Module Config ation and space debrts envuonment w1th the followmg

spec1ﬁcanons 5% space debris growth rate Space Station operauon penod from 1995-2004;
460 km Space Station altltude 28 5 degree Space Statlon 1nchnat10n 0 97 total Core Module

Conﬁgurauon probablhty of no penetratlon 588 m’ total Core Module Conﬁguranon debrls

area; 10 cm bumper/wall separatmn O degree lmpact angle (normal) 6061 T6 alumlnum alloy

bumper; 2219-T87 aluminum alloy wall; and 9 km/sec average impact veloc1ty
Because other approaches involve the analysis of existing protective structures designs,

the design methodology presented here is unique. The process begins with the definition of the

space debris environment to determlne the critical design pl‘OjCCtlle diameter and density. The

design problem is then formulated in terms of a hypervelocity 1mpact predlctor as a weight

SAIC
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minimization function of the independent (or designer controllable) variables. These variables
generally include bumper/wall material properties and thicknesses. The protective structures
system is then globally optimized using the Geometric Programming technique. Sensitivity

analyses are performed to mvesngate thc effect of changes in the system parameters on the

- optlmal desxgn Several hyperveloc1ty 1mpact predlctors are analyzed, mcludmg the Wilkinson,

Burch, PEN4, and Nysmith models, as well as combinations of these models.

1.5 Study Results
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2 ANALYSIS OF NEW SPACE DEBRIS ENVIRONMENTS
2.1 Earth Orbital Space Debris and Meteoroid Environs

The space debris environment model chosen for this study is due to Kessler”. The major
dependencies considered involve space debris growth rate, spacecraft operational period,
mission altitude and inclination, spacecraft debris area, orientation, and probability of no
penetration.

The space debris flux is given by Kessler as

F(D,h,i,t,s)=Bo(h,s)y() (F,(D)g,(t) + F(D)gxtr)) (1]
where
b(h,s)=¢,(h,s¥($,(h,5)+1) [2]
§y(h,5) = 107007 3]
F,(D)=1.0510"yD* [4]
F,(D) =7.0(10"%(D +700)° (5]
g(6)=(1+2P)~"% [6]
g0 =(1+P)" " 7]

The spacecraft inclination factor for 28.5 degrees is 0.9135.

The cumulative flux N is given by
T
N=[ Faa (8]
0
which may be approximated using one year intervals by

N=A 3 F(D.hit,s®) 9]

=g
ﬁ
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A Poisson arrival rate for space debris gives
Py=e™ | [10]
A closed form solution for D may be accurately found for particle diameters much smaller than

700 cm. This is given by

( 10500%6G)
D= 11
~5.9499(107)G, ~ s ]
where |

G,= 3 6(h,s(t))g,(e) forj=12. [12]

l=l‘-,

The average projectile mass density is given in gm/cm® by Kessler as

p,=2.8 for D <lcm [13]
p,=2.8/D*™ for D > lcm [14]

This relationship is shown in Figure 2.1-1.

Foran orbital inclination of 28.5 degrees, the non-normalized impact velocity distribution
is given by
fV)=(14.46V ~V?)(18 7,40 -1 | 0.67¢~-55039257) +.0.0116(28.91V - V?)[15]

The normalized impact velocity distribution is given by

=LY [16]
["rvyav
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This distribution is shown in Figure 2.1-2 for i = 28.5 degrees. Finally, the impact angle is
given as a function of impact velocity as

0 =cos™'(-V/15.4) [17]
This relationship is shown (with uncertainty bounds) in Figure 2.1-3 for a surface parallel to

the CMC velocity vector.

3

PROJECTILE DENSITY (GM/CUBIC CM)

0 | i | | | 1 1 | i
o 1 2 3 4 5 6 7 8 9 10
PROJECTILE DIAMETER (CM)

Figure 2.1-1. Space Debris Particle Density vs Diameter
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Figure 2.1-2. Velocity Probability Distribution for 28.5 Degrees Inclination
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00 L= 1 L 1 ! I 1 .
0 2 4 6 8 10 12 14 16

PROJECTILE IMPACT VELOCITY (KM/SEC)

PROJECTILE IMPACT ANGLE FROM NORMAL (DEGREES)

»

Figure 2.1-3. Projectile Impact Angle From Normal of Surface Oriented Parallel to
CMC Velocity Vector vs Impact Velocity

The total meteoroid environment flux-mass model is given by Cour-Palais™ as

Log,,(V,) =—14.339 — 1.584 Log,(m) — 0.063(Log,(m))’ [18]
for
m e [1072,107)
and
Log,,(N,) =—14.37 - 1.213 Log,,(m) [19]
for

®
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m e [107,1]
with shielding factor
- 1+cos(¢)

2

sin(@) == —

and gravitational defocussing factor

0.43
G= W +0.57

12

[20]

[21]

[22]

where R is the radius of the shielding body (= 6378 km for Earth), and Ny, is the spacecraft range

from the Earth’s center in Earth radii. The velocity probability distribution for meteoroids is

shown in Figure 2.1-4. The average mass density is 0.5 gm/cm’, with average particle velocity

of 20 km/sec. -
- 0.3
s |
é 025 | F/_‘
g |
2 o2}
$
> [ ]
2 015 |-
2
L
3 : _
= oos|
g » [J
Z
0 L 1 1 \
0 20 40 60 80

Velocity (km/sec)

Figure 2.1-4. Meteoroid Velbcity Probability Distribution
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2.2 Measures of Design Effectiveness

The traditional measure of protective structures design effectiveness is the probability of
no penetration of the pressure wall. This measure generally accounts for the risk associated
with the particle size, impact velocity, and impact angle. It may also include spall factors to
account for impact scenarios where penetration does not occur, but spallation does.

The probability of no penetration of a protective structure generally does not reflect uncertainties
in the environment, in particular, the particle shape, density, and diameter. These uncertainties
may be estimated by establishing confidence intervals about the expected probability of no
penetration.

2.3 Potential Protective Structures Design Approéches

Active Design

Active design includes debris mitigation and removal. Debris mitigation is the design of
spacecraft and launch vehicles to minimize the amount of debris generated through operations.
Debris removal includes the entrapment and/or possible destruction or disposal of debris.

Passive Design

Passive protective structures design is the placement of shields permanently spaced
outboard from the pressure wall to disrupt the incoming particle. One approach to providing
design insight is through the use of Geometric Programming (GP).

GP is a particular nonlinear programming (NLP) technique formalized by Duffin, Pet-
erson, and Zener® in 1967. It is practiced by engineers, scientists, and mathematicians alike.
To appreciate the elements of GP requires a short mathematical presentation.

The prototype Geometric Programming problem is formulated in terms of posynomials -
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polynomials with positive coefficients, positive-valued independent variables, and real expo-

nents. The problemisto

minf= Zlc I'le [23]
= J.
subject to
Zlc Hlx I=12,...p [24]
= J- - Tt - i -

| Obwously, thls isa grcat rcstnctlon m apphcablhty, smce not alI NLP problcms may bc for-

mulated in terms sof [23] and [24] For problems of this form, includin gnonconvex programmm g

problcms, GP provxdcs the globally optlmal solunon

Anthmetxc-Geomcmc Inequality. The dual Geometric Programming problem is given by

maxv(5) = n( J(fl (n(8 ) [25]
=1 =1 Oy
with

>:8.a,,+5:(zs,, ) g=1,2...k 26]

=i\ jm=l
$8=1. @

i
wm=28 I=12..p [28]

Clearly, equations [26]-[28] represent k+p+1 equations in n+p+m,+m,+...+m, unknowns. If

k+1>n+ f,m, - [29]

I=1
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then the system is overspecified. If, in addition, the system is inconsistent, then the problem

formulation or model selection must be reconsidered. If
k+1=n+‘f,1m, [30]

and the system has nontrivial determinant, then a unique solution for the dual variables exists.

If
k+1<n+tf,lm, [31]

then the system is underspecified. The Geometric Programming degree of difficulty is given
by

DOD =n—-k-1+ & m, (32]

I=l
Optimal dual variables for systems with positive degree of difficulty may be found by using a
number of techniques, includihg search methods. Once the optimal dual variables are deter-

mined, they must be converted back to the primal variables using the relationships

f=v(®) [33]
& ” ®
p Hlx,f'"=8iﬁ, i=1,2,...,n [34]
7= .
k a. ld
u,cajI;lej“'=8,-, 1=1,2,...,p [35]

Note that this dual-to-primal conversion involves n+p nonlinear equations, and therefore rep-
resents a potentially difficult problem to solve in its own right.

Now, if the number of terms in the objective function (n) is large, and the number of
independent variables (k) is small, a large degree of difficulty problem often ensues (particularly

in a problem with few constraints). In these cases, solution of the dual problem may be quite

- ®
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methods are used, because the first and second (and hlgher-ordered) pamal derlvauves of the

independent variables are easily given as:

X5 cap ¥ [36]
; i=1 J=l .. - e
az n R k )
= ,é’; : = igl 3,8, (xx,) 'I_I;[l x;" 371

Based on the relanvely large number of recent applied Geometric Programmmg articles,
it is apparent that GP possesses a fairly high unhty, partlcularly in the area of structural design.
Because GP is the only NLP technique which offers the guarantee of a globally optimal solution
for certain nonconvex prpblems, it should be considered more widely in practice. Additionally,
for zero degree of difﬁeuliy problems, GP can previde an analytic optimal solution for the

obJectxve functlon and mdependcnt vanables Tms attribute provxdes greater 1n51ght for the

system de31gner than that obtamable by ether NLP techmques Fmally, the va]ues of the dual
variables may provide very rcrucial design information alone in terms of the physical parameters
of the problem at hand.

Sinceitsinception, GP has been widely applied to structural design optimization problems.
These problems may involve dynamic and static loadings, both determinate and indeterminate.
The posynomial property of weight minimizatior;fer zﬁuctmﬂ design problems matches nicely

with the GP techmque Addmonally, smce ‘many structural desxgn opnmlzanon problems

include a large number of independent variables, this reduces the degree of difficulty for the
GP process (see equation [32]).
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Recently, GP has been found to be widely applicable to the optimization of spacecraft
protective structures using analytic hypervelocity impact models.'®'” The posynomial nature
of these predictors is not unusual, since many physical phenomena may be attributed to a
geometric model.

The basic optimization problem is a weight minimization problem of the protective
structures. It has been shown'® that for spacecraft structures with low curvature and relatively

large diameter, it is sufficient to minimize the total mass per unit area given by

W= 2 pi, [38]

i=]
In particular, this is true for the Space Station Core Module Configuration. Increasing the
complexity of the weight objective function by accounting for specific configurations only
serves to increase the complexity of the optimization technique and convergence time unnec-
essarily. No improvement in accuracy is achieved.
Three hypervelocity impact predictors, developed in the 1960’s and displaying different
attributes of Geometric Programming are due to Wilkinson'®, Burch” and Nysmith.""*

The Wilkinson predictor is a piecewise differentiable model given by

0.364D%, V 0 D
t,= p: cos() for P <1, [39]
LS Pif

_0364Dp}V cos®) . Do,

> 1. [40
L,S*pitip, Pty ]

Under condition [40], the dual Geometric Programming objective function is given by

v(8) = (p/8,)" (c/8) [41]
4 2
Cl - 0364D p;V COS(e) [42]
LS°p,
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3, +d,=1
5,-8,=0
Equations [43] and [44] together imply
h=g=12

The minimum wcight“and globally optimal thicknesses are gian by ”

12070%,( “22 )"
W,= -
: Vcos(8) \1/2
: _060D7,(“72)
to Spy
V cos(0) \1/2
060407, “22)
g 5p;

Thus, the globally optimal algorithm for the Wilkinson Predictor is

18

[43]

[44]

[45]

[46]

[47]

[48]

Figures 2.3-1, 2, and 3 show the optimal design values of minimum system mass per

unit area, and optimal bumper and wall thicknesses vs projectile diameter, bumper/wall sepa-
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ration, and projectile velocity, respectively, for the Wilkinson predictor. In Figure 2.3-1, the
projectile density varies with diameter according to equations [13] and [14]. In Figure 2.3-3,
the impact angle remains constant at 0 degrees (normal). The optimal bumper and wall
thicknesses for the Wilkinson predictor are approximately equal due to the similarity in bumper

and wall material densities (see equations [47] and [48]).

5

Wilkinson Predictor
Space Debris Example
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Figure 2.3-1. Optimal Design Value vs Projectile Diameter for Wilkinson Predictor
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i Wilkinson Predictor
4 Space Debris Example
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Figure 2.3-2. Optimal Design Value vs Bumper/Wall Separation for Wilkinson
Predictor
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| |Wilkinson Predictor

Space Debris Example /
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33
© D =1.501cm
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Figure 2.3-3. Optimal Design Value vs Projectile Velocity for Wilkinson Predictor

The normal impact predictor for the Burch model is given in functional form as

Fo M ¢
,F(T‘)Soﬁ)w ”

where
F, =242(:/D)°* +4.26(t/D)**-4.18 [50]

Equation [50] may be approximated by

SAIE
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K =F;" =28(t/D)"" +1.58(t/DY""

Then W is given in posynomial form as

W= Pt +pCK

where

D\ /¢
N, (7]

E = So.'n

The dual Geometric Programming problem is to maximize

V)= (o8 (2.8,)22@ 87 )6: ( 158 fD osr ]a, _
subject to
8, i0.57az -0.578,=0

Equations [55] and [56] may be partially solved to give
9, =2.33(1-1.573,)

8, = 1.33(28,— 1)

Since the dual variables must all be positive, we have

0.5<8,<0.64

Thus, the one degree of difficulty algorithm is given by:

22

[51]

[52]

[53]

[54]

[55]

(56]

[57]

[58]

[59]
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Figures 2.3-4, 5, and 6 show the optimal design values of minimum system mass per

unit area, and optimal bumper and wall thicknesses vs projectile diameter, bumper/wall sepa-
ration, and projectile velocity, respectively, for the Burch predictor. Figure 2.3-4 reflects a
constant projectile density as given in equation [13]. In Figure 2.3-6, the impact angle remains

constant at 0 degrees (normal).
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Figure 2.3-4. Optimal Design Value vs Projectile Diameter for Burch Predictor
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i Burch Predictor
Space Debris Example
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Figure 2.3-5. Optimal Design Value vs Bumper/Wall Separation for Burch Predictor
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Figure 2.3-6. Optimal Design Value vs Projectile Velocity for Burch Predictor

The Nysmith equation was developed for meteoroid impacts and may be written

5.08V°7*D*%
T TIE [60]
with inequality constraints
h
—<
DS 0.5 [61]
and
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L
) <10 [62]

Substituting equation [60] into [38] results in

5.08V°078p 2%
W=r+ —_—t{' Sagin [63]
The problem constraints may be rewritten
D
L s 3 [64]
21.72v%7 D%
12 = [65]

The first step in this analysisis todetermine when the problemis feasible. This corresponds

to the question: When is the constraint set defined by [64] and [65] nonempty? Clearly, this

is the case if
% > 21.72;/:20 3636 [66]
or
D222 [67]
A more usable form is given by
S 24.184DV°? [68]

The conditions of existence of a local (and thus global) optimal solution to the problem
will now be established.
If

D <£0.235V™? [69]
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then the optimal solution to the problem exists and is given by

1.907v°1p 1!

P §o91 [70]
3.613v%p 19

t% = So.91 [7 1]
5.520Vo.182D 191

WO = So.91 [72]

Note that the ratio of optimal bumpeirrthickness to total thickness is 0.345. The corre-
sponding ratio for the wall is 0.655. Thﬁs, provided the values of the systemic parameters satisfy

Finally, notice that we provide optimality conditions for most of the feasibility region. In
fact, it is now only necessary to determine the existence of optimal solutions in the interval

0.235V** <D <0245V [73]

Figures 2.3-7, 8, and 9 show tl;c optimal design values of minimum system mass per
unit area, and optimal bumper and wall thicknesses vs projectile diameter, bumper/wall sepa-
ration, and projectile velocity, respectively, for the Nysmith predictor. Figure 2.3-7 reflects a
constant meteoroid density. In Figuf; 2.3-9, the impact angle remains constant at 0 degrees

(normal).
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Figure 2.3-7. Optimal Design Value vs Projectile Diameter for Nysmith Predictor
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Figure 2.3-8. Optimal Design Value vs Bumper/Wall Separation for Nysmith Predictor
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| |Nysmith Predictor D=0.84cm
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Figure 2.3-9. Optimal Design Value vs Projectile Velocity for Nysmith Predictor

We now consider the combination of impact predictors corresponding to ballistic, pro-
jectile shatter, and projectile melt/vaporization regions. The optimization problem is first
formulated and then solved for these three impact regions. These optimal solutions are then
integrated into an overall optimal solution. The predictor equations chosen are based on previous
work performed by Boeing. The ballistic, projectile shatter, and projectile melt/vaporization

predictors are given by the PEN4, Burch, and Wilkinson models respectively.
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The PEN4 model in functional form is given by the following set of equations:

/] 2

0.31 113
0281D
- 1.67( ;‘sp”J ( p’)A cos(@)

€=

1~

c+
a=133VRlp}

P

b= SSyit‘e"'m('ﬁv/ cos(0)

c=133R2p,

d =R t,p,/cos(8)

This set of equations is valid for

Vsz+4000

where

V,=4100 if /D <0.4

V,=4986(t/D)** if /D >0.4

formed on t, with initial point

31250074

1 =0.16625VR}p, cos®)——
n

to determine if the ballistic region is appropriate for consideration.

32

[74]

[75]

(761

[(77]

[78]

[79]

[80]

[81]

(82]

When equations [74]-[79] are substituted into equation [38], a one—dimcnsional search is per-

[83]

corresponding to t, =0. When a local optimal solution is determined, condition [80] is checked
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The Burch model is actually two separate predictors, one for normal impacts, and one for
oblique impacts. The normal impact predictor is given in functional form in equations [49]

through [53]. The oblique Burch predictor is formulated in terms of flight path and normal path

penetration as
:,=D(F—‘T-I%F6—3§)m € isy" [84]
where F, is as defined in [50] and
F,=0.5-1.87(t/D)+(5t/D — 1.6)’ + (1.7—12¢/D )y, [85]
x = tan(8)— 0.5 (86]

The weight minimization problem may then be formulated as

W =p,t,+p., [87]
subject to
N, <0.85 [88]
where
Ny =F,(D/t)(CIV)*" [89]
F, = 0.32(2/D)* +0.48(t,/D)"sin’(®) [90]

and t, is given by [84]. This problem is solved using an exterior penalty function technique

with objective function
o(,) = W + 8K (N — 0.85)° [91]

where

8=1if Ny,-0.8520 [92]

SAIC

An Employee-Owned Company



34

0=0 if Ny-0.85<0 [93]

A random search with a 99% confidence interval of 0.01 inches is performed, and K is increased

until
SK(N,-0.85)’<¢ [94]

The random search interval for t, is specified by using the single plate equation

tl = Kl m 0.352 p:/6V0.875 [9 5]
0.816
K =—— 96
1 e lllsp {IZ [ ]

The interval is then given by [0,t,].
Due to the discontinuities existing between the three impact predictors, an integrating

algorithm must be developed. This algorithm is included for fixed velocities.
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Once the optimal bumper and wall thicknesses are determined for each velocity, the

integrated optimal bumper and wall thicknesses are found from

14

= [ T8V forist2. [97]
Real Time/Reative Desi

Real time and reactive protective structures design refers to the concept of performing
designin orbit through the use of smart structures, smart materials, or the combination of passive
and active design techniques. The real time design approaches may be accomplished through
particle sensing either before or during impact. Impact particle mass, velocity, angle, and
location prediction is performed to provide the necessary algorithmic information to the
structure/material controller. The material/structure is then configured to defeat the specific
impact scenario anticipated. Real time/reactive protective structures design provides the most
flexible and safest design alternative available, but also stresses technology the most.

2.4 Aluminum Alloy Bumper Materials

A comparison of aluminum alloy bumper materials is shown in Table 2.4-1. As shown,
the minimum weight alloy is 2011-T8. Note the wide variation in CMC weights for different
aluminum alloy bumper materials.

Figure 2.4-1 shows the distribution of optimal bumper and wall thicknesses by hyper-
velocity impact region for the 2011-T8 aluminum bumper material and 2219-T87 aluminum
wall material. Note that the optimal bumper thicknessis most heavily influenced by the projectile
melt/vaporization region, while the optimal wall thickness is most heavily influenced by the

projectile shatter region.
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Figure 2.4-2 shows the percentage arca under the velocity probability distribution for the
2011-T8 aluminum bumper. Ncarly 2/3 of the likelihood of impacts is above 8 km/sec, where
testing is not generally attainable. |

Figure 2.4-3 shows the optimal 2011-T8 bumper th;ckness as a function of projectile
diameter. This relationship is quite linear. Shown in Figure 2.4-4is the opumal 2219-T87 wall
ﬂnckness as a function of projectile diameter. This relationship is shghtly convex. Figure 2.4-5
gives the minimum module weight (normalized to the baseline casc) as a function of pro;ecnle
diameter for the 2011-T8 bumper case.

Table 2 4-1 Companson of Alummum Alloy Bumper Materlals

e S nEiilE Ao Bl e e e it g Riommes Ziiio D s S
————

ALUMINUM OPTIMAL OPT IMAL WALL MINIMUM CMC
ALLOY BUMPER BUMPER THICKNESS (CM){ WEIGHT (KG)
TYPE THICKNESS
(C™M)
2219-T87 0.46 0.65 5715
1100-H18 0.50 0.64 5839
2011-T8 0.46 0.64 5665
2014-Té6 0.44 0.71 5910
2024-T81 0.44 0.72 5929
5005-H18 0.49 0.64 5760
5050-H38 0.49 0.64 5768
5052-H38 0.49 0.65 5748
§5056-H38 0.49 0.66 5762
5083-0 0.53 0.65 5978
5086-0 0.55 0.65 6059
5154-H38 0.49 0.65 5769
5357-H38 0.48 0.64 5737
5456-0 0.52 0.65 5942
6061-T6 0.48 0.64 5695
6063-T6 0.48 0.64 5737
6101-T6 0.49 0.64 5760
6151-T6 0.48 0.65 5719
7075-T6 0.43 0.71 5858
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Figure 2.4-5. Minimum Module Weight vs Projectile Diameter (2011-T8 Bumper)

2.5 Bumper/Wall Separation

Figure 2.5-1 shows the decreasing relationship between minimum CMC weight and
bumper/wall separation. The CMC weight shown is normalized to the baseline minimum weight
of 5665 kg given in Table 2.4-1. Note that increasing the bumper/wall separation from 10 to
15 cmresults in a 25% decrease in CMC weight. The optimal bumper/wall separation of roughly
200-250 cm which minimizes the normalized minimum CMC weight is shown in Figure 2.5-2.
Finally, the optimal bumper and wall thicknesses as functions of bumper/wall separation are
given in Figure 2.5-3. This depicts a fairly constant optimal ratio between bumper and wall

thickness.
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Figure 2.5-1. Minimum CMC Weight vs Bumper/Wall Separation (Aluminum Alloys)

An Employee-Owned Company

I

Il |

tr o @y oo« oyl oWy mWiIonn wmw et &«



| R {

(I

tl it il

{

41

0.4
039 -
038
037
036
035
034 -
033

032 -
031 -

0.3 1 | I 1 ] 1 1 1
0O 50 100 150 200 250 300 350 400 450 500

Bumper/Wall Separation (cm)

Figure 2.5-2. Minimum Module Weight vs Bumper/Wall Separation (2011-T8 Bumper)
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2.6 Space Station Altitude o

Figures 2.6-1 and 2.6-2 show the relationéhips between Space Station altitude and pro-
jectile diameter and minimum CMC weight, respectively. Note the high sensitivity of design
weight to altitude between 200 and 1000 km. ﬁc optimal bumper and wall thicknesses as

functions of Space Station altitude are given in Figure 2.6-3.
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Figure 2.6-2. Minimum CMC Weight vs Space Station Altitude (Aluminum Alloys)
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Figure 2.6-3. Optimal CMC Thicknesses vs Space Station Altitude (2011-T8 Bumper)
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2.7 Risk Considerations

E II ] l! ! .I

Figure 2.7-1 shows the normalized debris velocity probability distribution for the Space
Station at 28.5 degrees inclination. Note the wide distribution of potential impact velocities
from O to roughly 15 km/sec. Recall, also, the widely differing structural responses, and thus,
optimal designs, over this velocity range. Figure 2.7-2 shows the cumulative normalized

velocity probability distribution for the Space Station.

0.2
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Figure 2.7-1. Normalized Velocity Probability Distribution For 28.5 Degrees

Inclination
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Particle Impact Angle
The relationship between particle impact angle and velocity as prescribed by [17] is shown
in Figure 2.7-3. Uncertainty bands are included as dashed lines. Figure 2.7-4 shows the _
' normalized angular probability distribution for the Space Station. Again, the optimal protective -
structures designs vary greatly over this range. Figure 2.7-5 shows the cumulative normalized
angular probability distribution for the Space Station. '
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Figure 2,7-3. Projectile Impact Angle From Normal of Surface Oriented Parallel to -
CMC Velocity Vector vs Impact Velocity L B

An Employee-Owned Company

eom



i

ul i

o

G

il

1l

‘!

i

(M

t

gl

0.2
S o018
=
L0
E 016
2
(o]
2> 0.14
5
g 012
S
< 0.1
]
2
> 008
<
3 0.06
N
g 004
2
0.02
0

Figure 2.7-4. Normalized Angular Probability Distribution For 28.5 Degrees

47

10

20

30

40

50 60 70

Impact Angle From Normal (Degrees)

80

Inclination For A Surface Oriented Parallel to CMC Velocity Vector

SAIC

90

An Employee-Owned Company



48

1
-
17 -
o 0.9
2
= 0.8 —
3
(] 0.7
a.
) -
g’ 0.6
< 05
-
N 04
'-t_; .
€
2 03
[+))
.‘_% 0.2 +
=
E 0.1
8 O l 1 1 L

0 10 20 30 40 S50 60 70 80 90

~ Impact Angle From Normal (Degrees)
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Particle Arrival Ti
The particle arrival times are generally assumed to be Poisson distributed. Thus, the

particle interarrival times are exponentially distributed. However, the mean times of arrivals
change over time, and therefore, particle arrival times follow a nonstationary Poisson process.

The obvious risk associated with the particle arrival times is not knowing when impacts will
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occur. Sensor data could reduce this risk.

Mission Ris!

Figures 2.7-6 and 2.7-7 show the relationships between total CMC mission risk and
projectile diameter and minimum CMC weight, respectively. The weight shown is normalized
to the baselined weight of 5665 kg. CMC mission risk is defined as one minus the total CMC
probability of no penetration. Note that an increase form 0.03 to 0.05 in mission risk results in
a 30% protective structures design weight reduction. The optimal bumper and wall thicknesses

as functions of mission risk are given in Figure 2.7-8.
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Figure 2.7-7. Minimum CMC Weight vs Mission Risk (Aluminum Alloys)
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Figure 2.7-8. Optimal CMC Thicknesses vs Mission Risk (2011-T8 Bumper)

Mission Duratic

Figures 2.7-9 and 2.7-10 show the relationships between Space Station beginning year
of operation and projectile diameter and minimum CMC weight, respectively. Note the convex
shape between 1995 and 2000 followed by a concave representation through 2005. This is due
to a benign solar flux effect in the latter years. A schedule delay of 5 years results in a 50%
increase in protective structures design weight. The optimal bumper and wall thicknesses as

functions of first year of operation are given in Figure 2.7-11.
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. Figure 2.7-9. Projectile Diameter vs First Year of Space Station Operation
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= 1996 1998 2000 2002 2004
= First Year of Space Station Operation
o Figure 2.7-11. Optimal CMC Thicknesses vs First Year of Operation
- (2011-T8 Bumper)
= Figures 2.7-12 and 2.7-13 show the relationships between Space Station mission duration
= and projectile diameter and minimum CMC weight, respectively. These trades are for constant
= beginning years of operation of 1995. Note the shape reversal occurring at about 15 years. This
is due to a solar flux effect for that particular period. A 10 year increase in mission duration
= more than doubles pfotectivc s&ucnnéé desi gn wei ght The optimalrbur'nbeﬁr and wall thicknesses
- as functions of Space Station mission duration are given in Figure 2.7-14.
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Figure 2.7-12. Projectile Diameter vs Space Station Mission Duration
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Figure 2.7-14. Optimal CMC Thicknesses vs Mission Duration (2011-T8 Bumper)

2.8 Uncertainty Considerations

Particle Diameter/S Debris G h Rat

Figures 2.8-1 and 2;8-2 show the relationshipé between space debris growth rate and
projectile diameter and minimum CMC weight, respectively. Note that the design implications
are more severe than that indicated by the growth in projectile diameter. This is due to the fact
that the structural response of the protective structures is a nonlinear function of projectile
diameter growth. Additionally, note that an increase in space debris growth rate from 5% to
8% results in a 50% increase in minimum protective structures design weight. The optimal

bumper and wall thicknesses as functions of space debris growth rate are given in Figure 2.8-3.
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Note that the optimal ratio between bumper and wall is fairly constant up to about 6% debris
— growth rate, and then decreases as the wall thickness becomes a greater influence on protective
o structures design.
L 4.5
o 4
- 5 3.5
5
- S 3
5
a 2.5
Q2
_ 3 2
- )
a 1.5
N 0.5
0 1 l 1 I I I A l 1 l 1 l L l
i 0 2 4 6 8 10 12 14
- Space Debris Growth Rate (%)
o Figure 2.8-1. Projectile Diameter vs Space Debris Growth Rate
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Figure 2.8-2. Minimum CMC Weight vs Debris Growth Rate (Aluminum Alloys)
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Figure 2.8-3. Optimal CMC Thicknesses vs Debris Growth Rate (2011-T8 Bumper)
Particle St Densi
The distribution of particle shapes for space debris in orbit is unknown. The potential
variation in protective structures design effectiveness due to changes in particle shapes has been
shown by hydrocode and impact test data to be relatively large.
The particle density is generally unknown as well. Itis modelled as a decreasing function

of projectile diameter as shown in Figure 2.8-4.
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" Figure 2.84. Space Debris Particle Density vs Diameter
!I I £ ] Il i B' l 2 I .

~ Although distributions exist for the risk parameters, these are subject to uncertainties in

| |
il

their accuracy and development. For instance, the distribution of projectile velocities is subject

wlil|

to uncertainties. Uncertainties in mission risk may be measured by establishing confidence

intervals about the expected mission risk.
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2.9 Second Order Parametric Analyses

This section includes numerous design trade parametrics to aid the designer in
decision-making and design consequences of environment-related issues. The fourindependent
variables shown are bumper/wall separation, space debris growth rate, CMC mission duration,
and CMC mission risk.

Bumper/Wall Separation

Figures 2.9-1 through 2.9-3 show the effects of bumper/wall separation on minimum
CMC weight for various space debris growth rates, CMC mission durations, and CMC mission
risks, respectively. Note, for instance, that the protective structures designer can maintain
equivalent weight if the space debris growth rate is actually 7% by increasing the bumper/wall
separation from 10 to 15 cm.

Space Debris Growth Rate

Figures 2.9-4 through 2.9-6 show the effects of space debris growth rate on minimum
CMC weight for various bumper/wall separations, CMC mission durations, and CMC mission
risks, respectively. Note, for instance, that the protective structures designer can maintain
equivalent weight if the space debris growth rate is actually 9% by increasing the mission risk

from 3% to 5%.
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Figure 2.9-3. Minimum Core Module Weight vs Bumper/Wall Separation for Various
CMC Mission Risks (2011-T8 Aluminum)
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Figure 2.9-4. Minimum Core Module Weight vs Space Debris Growth Rate for Various
Bumper/Wall Separations (2011-T8 Aluminum)
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Figure 2.9-6. Minimum Core Module Weight vs Space Debris Growth Rate for Various
CMC Mission Risks (2011-T8 Aluminum)
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CMC Mission Durati

Figures 2.9-7 through 2.9-9 show the effects of CMC mission duration on minimum CMC
weight for various bumper/wall separations, space debris growth rates, and CMC mission risks,
respectively. Note, for instance, that if mission duration increases from 10 to 15 years, the
protective structures designer can maintain equivalent weight by increasing the bumper/wall
separation from 10 to 20 cm.

Figures 2.9-10 through 2.9-12 show the cffec;s of CMC mission risk on minimum CMC
weight for various bumper/wall separations, space debﬁs growth rates, and CMC mission
durations, respectively. Note, for instance, that if mission risk increases from 3% to 10%, the
protective structures designer can afford to reduce the bumper/wall separation from 10 to 5 cm

while maintaining weight.

10

o — 10 cm Separation
s ] = 15 cm Separation
7 - // ......... maﬂsﬂpﬂmbﬂ
6 /

/ ——- 5 cm Separalion
5 - /

Normalized Minimum CMC Weight

N W
T

CMC Mission Duration (years)

Figure 2.9-7. Minimum Core Module Weight vs CMC Mission Duration for Various
CMC Bumper/Wall Separations (2011-T8 Aluminum)
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Figure 2.9-8. Minimum Core Module Weight vs CMC Mission Duration for Various

Space Debris Growth Rates (2011-T8 Aluminum)

-
[~}

——-= 1% Mission Risk

Normalized Min. CMC Weight
N W oA BN @ ©
|

-
1

(=4

25

CMC Mission Duration (Years)

Figure 2.9-9. Minimum Core Module Weight vs CMC Mission Duration for Various
CMC Mission Risks (2011-T8 Aluminum)
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Normakzed Min. CMC Weight

Figure 2.9-10. Minimum Core Module Weight vs CMC Mission Risk for Various
Bumper/Wall Separations (2011-T8 Aluminum)
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Figure 2.9-11. Minimum Core Module Weight vs CMC Mission Risk for Various Space
Debris Growth Rates (2011-T8 Aluminum)
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2.10 Conclusions and Recommendations For Section 2
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3 PROTECTIVE STRUCTURES DESIGN OPTIMIZATION CODE
(PSDOC) OVERVIEW

PSDOC (Protective Structures Desxgn Opnrmzanon Code) was developed under NASA-

MSFC Contract NASS 37378 ”Optlrmzanon Techmques Apphed to Passwe Measures for In-Orbit

Spacecraft Surv1vab1hty" The purpose of PSDOC is to prov1de a user-fncndly PC environment
for a number of deSIgn and analytlcal tools mcludmglMPACT lOV developcd by SAIC Specxfic

analysrs areas for spacecraft protectlve structures de51gn opnmlzauon mclude selection of envi-

ronment, spacecraft characteristics and mission, and hypervelocxty unpact predlctor models. The

sxgmﬂcant features of PSDOC are a menu- dnven scenarlo and mput capabthty, post processmg

features, and file management system

;unhzatton of thxs software 'The g‘raphxcal user mterface(ﬁUI) environment used for PSDOC was

developed for a551st1ng techmcal personnel in galmng access to computer based models mmgm a

thorough knowledge of the code itself. ( Other apphcauons are easily fitted to existing models by

SAIC engineers and software scientists, Attachments of this GUT software to existing models or

"Retrofitting” allows for newer coding techniques and hardware technology advancements to be

immediately available to older, validated models without affecting the code’s reliability. Once this

71n1t1a1 connectmn has been made and checked w1th the orlgmal versmn addmonal 1nput and output

alterauons to the model are often desired and can be handled by SAIC staff under the direction of

Pt TR TivesE U Lo EEL E T M TEmER

our customers..
The PSDOC environment (retrofit to IMPACT10) was developed in coordination with
Sherman Avans and Jennifer Robinson of NASA-MSFC and Robert Mog, Andy Laidig, and Kevin
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Leonard of SAIC. The PSDOC user’s manual delivered to NASA-MSFC in Aug. 1990 presents
an overview of the windowing techniques and operating instructions for use of the PSDOC envi-

ronment. This manual contains all the necessary information for efficient use of PSDOC.
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4 MONTE CARLO SIMULATION ANALYSIS TOOL
4.1 Monte Carlo Simulation Purpose

The purpose of this simulation is to provide a statistical tool to address and quantify
protective structures design risks, uncertainties, and options, and to address system-level issues
relevant to designer decision-making and possible implications. The system of initial interest
is the structural configuration of WP01, including the Core Module Configuration. "Grow-to"
systems include module internal configurations and external structures (trusses, solar arrays,
etc.) as specified in thc'redesign. |

Initial investigations of interest include statistical analyses of primary impacts, penetra-
tions, and vulneraiale areas. "Grow-to" ih§c§ﬁ gations include interior effects, secondary ricochet
effects, and SSF element interrelations.

Risk considerations include cnvironment particle velocity, impact angle, and component
probability of impact. Uncertainty considerations include SSF IOC/FOC, particle diameter,
mass-density, shape, and uncertainties in particle velocity and impact angle distributions.

4.2 Monte Carlo Simulation Develdpment Approach

The tool development approach is to define the current SSF mission parameters and design
configuration, and interpret the geometry mathematically using FASTGEN. The mission
parameters drive requirements specification, including environment definitions. These con-
siderations, combined with appropriate random number modules and the FASTGEN results,
produce the necessary shotline time histories and intersecting body calculations. Survivability
assessments follow and employ deterministic models for hypervelocity penetration prediction.

Statistical assessments follow to supply answers to the questions of interest.
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The top-level version of the Monte Carlo simulation tool will be executed on IBM-
compatible PC’s. The current version of this tool runs on a VAX. It is anticipated that the
detailed version of this tool will operate on a CRAY. 1/O requirements are discussed in Section
4.4.

Verification and validation of the tool will be performed using a combination of PSDOC
and BUMPER. If the program execution times are considerable, a design of experiments
approach will be used to specify production run matrices.

4.3 Particle Time-Arrival Process for Monte Carlo Simulation Development

Several algorithms have been developed for the particle time-arrival process. The standard
assumption in this area is that arrival times are Poisson distributed. This means that the inter-
arrival times are exponentially distributed, and sorting of arrival times is not required. Mean
data is derived from the environment flux and appropriate spacecraft areas. This algorithm
leads to a terminating simulation defined by the mission profile.

Realistically, however, the meteoroid and debris environments are both nonstationary
Poisson processes, at best, since the mean arrival rates vary in time over the mission profile.
An approximation algorithm has been developed which alters the mean arrival rate to represent
the time period under consideration. However, this algorithm is not exact, since a period of
high arrival rates could be neglected using a low arrival rate corresponding to the previous
period, or vice versa. Thus, a more exact (continuous) algorithm should be developed. The

approximating algorithm for the space debris environment is given as:

SAIC

An Employee-Owned Company



76

adninhsviotninipbobviivhsh

If independent mean ‘and variance data for arrival rates are available, a uniform arrival

sl

process may be used as an alternative to Poisson arrivals. To compare this approach with the

Poisson process, the variance may be set equal to the square of the mean. An algorithm has

been developed for independent mean and variance data.
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Augmentation/repair times may be modelled using a number of distributions, if this
modelling is of interest. If mean data only for time to repair is available, an exponential service
model may be used. If independent mean and variance data are available, the gamma, weibull,
lognormal, or beta distributions may be appropriate.

4.4 Simulation Status

To date, the following items have been completed:
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5 DEVELOPMENT OF ADVANCED SHIELDING CONCEPTS

5.1 Introduction

The development of advanced shielding concepts presented in this section is a preliminary
theoretical modification of the Wilkinson and ballistic PEN4 predictors to multiple bumper
situations. The intent is to perform this preliminary analysis, and then correlate the results with
existing test data to improve the models.

5.2 Extension to Multiple Bumpers for Wilkinson Predictor

A number of different approaches have been attempted to modify the Wilkinson predictor
mathematically for multiple bumper systems. The one successful approach (physically) is given
as follows:

1. Modify the Wilkinson form in a product sense as:

0.364D°p,V cos(@ D
, =220 PV eosO) o 28 oy, [98]
Ln(r[l siz)pu III piti
0.364D°p2V cos(® D
[ = P,V cos(®) Pr 51 [99]

- a-1 a-1 or 1
L.( Hl S? )(rll piti)Pu n’ piL;
If our goal is to minimize system mass per unit area subject to the total separation between first

bumper and last wall equal to some desired value, we may write this as

n-1 0.364D*p2V cos @

minW = 3 m +—7— [100]
1))
n-1
s.t. 'Zl S, =Str [101]
where m;=p;t; [102]
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Storis the total separauon between the first bumper and the wall, and n-1is the total number of

bumpers (n is the total number of plates)

Under condition [99], the dual Geometric Programming objective function is given by

a-1 3 3 u‘l-l 1 7 a; |

maxv(§) = IT(118)" K78,y wy’ I} —— [103]
i=l J=1 mﬁj
0.364D*pV cos(6)
= I [104]
il 3 =1 [105]
8,-8,=0, i=12,...,n-1 [106]
-25,+8;=0, j=12,..,n-1 [107]
E 5, [108]
- J=l - -

Note that the degree of dxfﬂculty is 0, with 2n-2 mdependent variables corresponding to the n-1
bumper areal densities and the n-1 separations.
Equations [106] and [107] together imply

§=8=Un, i=12..,n-1 [109]
§=28,=2n, j=12,..,n-1 [110]

The minimum weight and globally areal densities are given by

u
_ 0. 364D°p Vcos(e) n-1)"
e 200 1)
1/ 22
0.364D*pZVcos(®)| (n—-1)" :
m‘.o—[ L S , i=12,...,n [112]
An Empioyee-Owned Company
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The optimal individual separations are given by

S0 ;
Sy=—on  J=12..n-1 [113]

The optimal separations are equal and uniformly distributed over the total available separation.

Thus, the globally optimal algorithm for the multi-bumper Wilkinson Predictor is

5.3 Results

Several results using the development of Section 5.2 are given in this section. The baseline
assumptions are a particle density of 2.8 gm/cm’, velocity of 9 km/sec, diameter of 1 cm,
impacting normally into a configuration with a total bumper/wall separation of 10 cm.

Figures 5.3-1 and 5.3-2 show how the optimal protective structures design configuration
varies with number of bumpers for projectile diameters of 1 and 3 cm, respectively. Note that
fora 1 cm particle diameter, the optimal number of bumpers is 2, while for 3 cm, it is 3 bumpers.
Also, note the significant penalty for choosing the wrong number of bumpers in these cases, as

well as the lack of symmetry of these penalties about the optimal number of bumpers.
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Figure 5.3-3 shows the optimal protective structurcidislgn configuration including
optimal number of bumpers as a function of partxclc diameter. Increasing particle diameter
results in an increasing optimal number of bumpers to defeat the particle. Note the optimal
transition regions between 1 and 2 bumpcrsr (corrésponding to particle diameters between 0.75
and 1 cm) and 2 and 3 bumpers (corresponding to particle diameters between 2.25 and 2.5 cm).

Also note the very lmear minimum system areal dcnsuy, showmg thc stabﬂxzmg effect of

increasing the oumber of b“mpcl‘s in the conﬁgurauon

Flgure 5.3 4 shows the opumal protective structures desxgn conﬁgurauon including

| opnmal number of bumpqs as ar funcuon of parnéle veloc1ty Thc most smkmg feature of this
trade is the relative insensitivity to velocxty for a dual bumper system, -

Figure 5.3-5 shows the optimal protective structures design configuration as a function
" of total bumpér/wall sepa}atlon As 1n pr?vf&lssm&es, there is a large weight incentive for

mcreasmg the total separatmn Furthcrmore mcreased separanon allows for more bumpers to

7 dlsrupt the i mcormng pamcle
~ Figure 5.3-6 is a replica of Figure 5.3-5, except that the optimal individual separations

are included.
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Figure 5.3-6. Optimal Protective Structures Design Values vs. Total Bumper/Wall
Separation (Modified Wilkinson)

5.4 Extension to Multiple Bumpers for Ballistic PEN4 Predictor

The multiple bumper recursion equations are given by:

T
V,=4100, 3‘50.4 [114]
T 0.21 Tl
V,=498 , 5 >04 [115]
0. 6T 25
Vo = 0281Dp — [116]
! ( . cos(9) P,

The first bumper is penetrated if
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V>Ve., (117]

The residual velocity (from the first bumper) is

1.33V2R%p, — (8, Tie >} cos(8) ]
ic =[ 3 1.;2:23;)(, +’;?:T,pll cos(e); ( )] (18]
The second bumper is penetrated if
Vi, > VSO,-.; [119]
The residual velocity (from the second bumper) is
Yn= [ e (ss,,rze JMWM) o r [120]
1.33R2p, + R, T,p,/ cos(6)
The third bumper is penetrated if
Ve, > Vs, , [121]
The residual velocity (from the (n-1)st bumper) is
v =[ 1.33V2_Rp,- (ss,._lT,_,e*"m'”V"-*) cos(e)]"2 22
1.33R2p, + R, T, _ 1P/ c0s(6)
The nth bumper is penetrated if
Ve, > Vs, [123]

Given 6061-T6 aluminum bumper materials (yield strength of 35 ksi, density of 2.71
gm/cm’, total thickness of 0.16 cm), 2219-T87 aluminum wall (yield strength of 51 ksi, density
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of 2.81 gm/cm’, thickness of 0.3175 cm), a projectile density of 2.81 gm/cm’, and a projectile
impact angle of 0 degrees (normal), Figure 5.4-1 shows the ballistic limit curves for single,

double, and triple bumper configurations. Note the relatively minor sensitivity to number of

bumpers over this limited range.
6

F -8

® PEN4 Recursion

N

Projectile Diameter (cm)
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o

. | | ] |
0 0.5 1 1.5 2 25
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Figure 5.4-1 Critical Diameter vs. Projectile Velocnty for Multl pIe Bumper Systems
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5.5 Advanced Shielding Concepts Status

To date, these multibumper concepts have been shown for a theoretical modification of
the Wilkinson predictor, as well as for the ballistic PEN4 predictor. It is reccommended that
these concepts be extended to the Burch predictor, and that the Wilkinson extension be correlated

with hydrocode data and the Burch extension with impact test data.
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6 DISCRETE PROTECTIVE STRUCTURES DESIGN OPTIMIZATION

6.1 Introduction

Within the field of nonlinear programming lies a technique called geometric programming.
Geometric programming is a purely algebraic method that provides global, and often analytic,
solutions to certain problems previously discussed in Section 2.3. These problems are called
posynomial programs, and they are generally nonconvex, nonlinearly constrained formulations.
The field of geometric programming has been extended to programs which are not
posynomials;*#4!"'2 however, the global features of the solution are not retained in this
extension. Thus, the term posynomial programming, sometimes called prototype geometric
programming, refers only to programs composed entirely of posynomials.

In general, discrete nonlinear optimization techniques are even less capable than con-
tinuous ones of providing global and analytic solutions.'” In particular, many current discrete
nonlinear techniques employ branch and bound derivatives, which generally do not result in
global optimization properties, except for convex programming problems. Discrete posynomial
problems which can be transformed to prototype geometric programs, on the other hand, result
in global optimization upon transfer to the dual. The general transformation can then be applied
to engineering design problems with independent variables restricted to standard or discrete
availabilities.

Subtask Goal

This subtask addressing the development and application of discrete nonlinear optimi-

zation techniques is not required in the Statement of Work, but is a natural extension of the

traditional continuous optimization problem. A full treatment of this subtask is given in Discrete
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QOptimization, by R. A. Mog. The goal of this subtask is todevelop a theory for solving nonlinear
programming problems that may be stated in standard posynomial form under the guidelines
of prototype geometric programming, but with discrete constraints on the primal independent
variables. The main development thrust is in the direction of dual program solution methods,
although primal solution techniques are also developed. Dual method solution approaches will
dépen& on éroblem‘ degfeé of difﬁculty, but fdf problems wit_h nontrivial degrees of difficulty,
partial invariance and direct search techniques are investigated for their utility. Because sig-
nomial (polynomial with undetermined coefficients and real exponents) programming methods
do not result in global optimization, extensions of discrete techniques to signomial and reversed
inequality constraint problems are considered secondary to this effort.

Another goal of this subtask is to demonstrate applications of the developed discrete
posynomial programming methodologies. These applications include challenges in the field of
spacecraft protective structures design optimization and emphasize missions that are relevant
to Space Station Freedom and space debris/meteoroid environments. Specific hypervelocity
impact predictor models include those of Nysmith, Wilkinson, and Burch.

Subtask Approach

After a brief review of posynomial programming in Section 6.2, two primal methods for
solving the discrete posynomial program are introduced in Section 6.3. The methods are
numerical in nature and easy to apply to practical problems. However, no global or analytic
information is guaranteed in their application. Therefore, in Section 6.4, a dual method is
developed which provides the global optimal solhtion to the discrete posynomial program.
Finally, three case studies which illustrate the capabilities of the primal and dual methods in

this field are presented in Section 6.5.
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6. 2 Rev1ew of Posynomlal Programmmg

Ina a search performed at the Rerlstone Scnnufic Informatlon Center (RSIC) to determine

“documents with the keywords "Geometric Programming™ in either the title or abstract, a total

of 92 listings were found. Of the 92 lisﬁhgs, approximately 34 were theoretical and 58 applied.

Most of the theoretical listings dealt with algorithmic improvements, code comparisons, tutorial

papers explammg the method and theses on spec1ﬁc areas of geometnc programming devel-

' opments " Of the 58 apphed hstmgs almost all mvolved structural design appli-

1,3,17,37,58,70,79,92,96,107-112,126,133,145,151,152,155

cations. ‘Other applied areas included economic,”

commumcanons, and trafﬁc flow problems Perhaps most surpnsmg is that 27 of the 92
listings were written after 1980. Since geometric programmmg was formalized in 1967, this

pomts toa p0551b1e resurgence in the method’s use.

of application papers conﬂicts with the dismissals of many textbook authors concerning the
utility of geometnc programmmg th thxs many hstmgs, it is clear that some scientists are
finding great uses for GP. - o * ) '

Based on the relatively large number of applied geometric programming listings in the
article survey, it is apparent that GP pdssesses a fairly high utility, particularly in the area of
stmctural desxgn Beeause GPisthe only nonhnear programmmg (NLP) technique which offers

the guarantee of a globally optimal solunon for certain nonconvex problems, it should be

considered more w1delyr inp practlce Addmehally, for zero degree of dlfﬁculty problems, GP

can provide an analytic optimal solution for the objective function and independent variables.

“This attribute provides greater insight for the system designer than that obtainable by other NLP

techniques. Finally, the values of the dual variables may provide very crucial design information

alone in terms of the physical parameters of the problem at hand.
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6.3 Discrete Posynomial Programming Using Primal Methods

Introduction

As explained earlier, geometric programming includes both posynomial and signomial
programs and dual and primal approaches. In this section, a primal method for solving discrete
posynomial programs is developed. The technique employed is an exterior penalty function
method!®*® supported by two alternate search techniques: a random/exhaustive search® and a
Hooke and Jeeves pattern search.™ The primal methodology computer code is called
POLYPRIME.FOR and is given in Appendix A.

Penalty Function Development

Penalty function techniques are widely used numerical optimization methods which
convert constrained optimization problems into unconstrained ones with appropriate penalties
for not satisfying the constraints.'*” Two general classes of penalty functions exist: exterior
and barrier functions. Exterior penalty function methods generally begin with points outside
the feasible solution space and progressively drive the solutions into the feasible region. Barrier
function methods require feasible initial points in setting up blockades along the constraint
surfaces.

For the problem of solving the primal formulation of discrete posynomial programs, an
exterior penalty function technique is chosen to relieve the analyst of the burden of specifying
a feasible initial point. This requirement could be particularly difficult when combinations of

continuous and discrete constraints are involved. The primal problem is specified as

minf= 3 ¢, 1 x [124]

i=1  j=1

i} ko,
st.  g=Xcllx*<K, 1=12,..p [125]

i=1  j=1
%
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and the additional discrete constraints

x;=rn;, j=12,...,q Sk [126]

One choice for an unconstrained penalty functionis . .

2 . .
min¢ = chx‘”+iﬁ,A,(2c.,nx J+.>31A,-a,-l§-[ﬂ] 1”02
A /

i=1 i=1 " j=1 Tj dni.
where
§=1, g-K>0 [128]
§=0, g-K<0, I=12,...p [129]
A_. =1, j=1,2...q. [130]

vHere, itis assumed w1thout loss of generalxty, that the xj s may be reordered such that the first
q of them are those requiring discrete solutions. Also, the discrete penalty term has an exponent

“of 1/2 to require a stricter measure of convergence, since

—’-{ﬁ] I£05<1 [131]
rj J dai

In POLYPRIME FOR the acceleranng factors begm at1.0 and progresswely are multiplied by

10 until convergence is reached, i.e.

2 - .
E &Az(): ¢ rIx ) + il A l?—[ﬁ} "’< £ = 0.001 [132]
=l j=1 /= i ad.

i
Note that thxs method handles rmxed dxscrete problems as well as continuous and purely discrete
problems Furthermore, note that although we are strictly concerned with posynomial pro-
gramming problems, this penalty funeuon approach is equally valid for generalized polynomials
or signomials and signomial constraints. Additionally, Type I, II, or III inequality constraints

are valid. However, the constraints must be converted to Type I, less than or equal to constraints,
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for implementation in POLYPRIME.FOR. Similarly, the constraint right hand side values, K,
may take any real value. This is a more generalized form than that allowed for prototype
posynomial programming where the K,’s must be equal to 1 for all constraints. Finally, note
that if convergence of continuous equality constraints is difficult to achieve using this formu-
lation, it may be easily modified by adding a penalty term for equality constraints separate from
inequality constraints. Note, however, that continuous equality constraints combined with
discrete variable constraints could easily result in no feasible solution situations.

Now, once the unconstrained penalty objective function is established, a method to
minimize it must be found. Two approaches using search techniques are discussed in the next
two sections, followed by a comparison of the methods.

Random/Exhaustive Search Subtechni

A random search technique™ is analogous to throwing darts at a dartboard with no
adaptation or learning between throws. (There do exist adaptive random search techniques, but
these won’t be considered here.) Although random search techniques may appear unsophisti-
cated due to their brute force nature, they are particularly useful in establishing optima of highly
nonlinear and multimodal functions. Since discrete nonlinear optimization problems tend to
add a degree of this type of complexity, it would appear that random search techniques would
prove fruitful.

The number of search points for a pure random search is given by Gottfried as
-1
F,

The search space is defined by specifying an interval of interest for each of the independent
variables. The main drawback for employing a random search technique in a discrete optimi-

zation problem using penalty functions is the severity of the convergence criteria. Unless the
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random draw is extremely fortuitous, the convergence criteria will not be met, particularly for
sparsely populated discrete feasible regions. For this reason, an exhaustive search option is
automatically called in POLYPRIME.FOR when the number of discrete feasible points (as
speciﬁed by thé search space) is less than ihe nuriiber of search pomts givéh by m, above. On
__the other hand, if the search region is dense with discrete points, as compared with the pres-

pecified number of random search points, then random search proceeds normally.

Hooke and Jeeves Pattern Search Subtechnique -

The Hooke and Jeeves pattern search'®” is a more methodical unconstrained search
technique, which requires an initial point, but no variable search intervals. The technique begins
with exploratory moves to establish a base point. These moves are followed by pattern moves
through successive base points. Convergence requirements are more easily met for discrete

problems using this method.

The Hooke and Jeeves péttern search technique is more methodical and generally con-
verges faster than the random/exhaustive search technique. Furthermore, it requires only an
initial point rather than an interval of investigation. On the other hand, the Hooke and Jeeves
method is generally fairly sensitive to the initial search point and is less likely to find global
optima for multimodal functions. Furthermore, although the random/exhaustive search tech-
nique may overly restrict the region of interest for a variable, this condition can easily be

diagnosed when the optimal solution is found at an interval endpoint.
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One excellent approach to combining the two methods” strong points is to use the random
search technique in solving the corresponding continuous optimization problem, and then use
that solution as the initial search point for the Hooke and Jeeves subtechnique for the discrete
problem. Another interesting study would be to compare the two methods from a time-
effectiveness standpoint.

6.4 Discrete Posynomial Programming Using Dual Methods

Introduction

The use of penalty function techniques with random/exhaustive and Hooke and Jeeves
search subtechniques may provide rapid convergence for discrete posynomial (and signomial)
programs. However, numerical instabilities may occur in the penalty function acceleration
parameters due to ridges in the penalty function. Additionally, global optimal solutions are not
generally achieved, particularly when exhaustive search is not performed. Finally, little ana-
lytical information is gained for sensitivity analysis when numerical methods are applied. The
restriction to posynomial programs does not lead to any significant advantages over signomial
programs using the primal approach. Indeed, the method is perfectly valid for generalized
polynomials or signomials and general constraints.

In this section, dual methods are applied to discrete posynomial programs. The main
advantages to these approaches are the guarantee of a global optimal solution and the analytic
information gained during the process. The main disadvantages are that some derivation is
required and that many nondegenerate continuous programs result in discrete programs with

high degrees of difficulty.
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D ree of 1
The prototype discrete pnmal program is given as

minf= Zlc Hlx [134]
= J=
s.t. El Cy nlx <1, I= 1’29“'9p [135]
i= Jj=
x=rn, Jj=12..,9Sk [136]

where c,, xj, c,,, and T; are posmve valued for all i,j,and ], and n;is a posmve mteger for all j.

:{VNote that thts pnmal program is qu1tc 51m1lar to that givenin Sectron 6. 3 wrth the only difference
" ”bemg the replacement of the K,’s with the value l Addmonally, in the case of the dual methods,
:the posmvrty restnctlons are stnctly adhered to. Recall that the pnmal method is equally valid
for all real coefﬁcrents, general ri ght hand side values;, and Type I, 11, and II constraints.
~ The first and most obvious fact to note about thls problem is that the contmuous optimal
ob]ectlvewf;nctlon value (obtatnecl by not consxdermg the discrete constramts) is always a lower
bound for theidiscrete objective function value. This is easily seen by contradiction, since, for
any set of n;’s established in a discrete optimal solution, the independent variables may always
take the values n,rj for any equxvalent continuous problem
The second item to notice is that the dxscrete equalxty constraints may always be written

as patrs of prototype posynormal constraints, i.e.

X; T;n;
— <1 A—<1 [137]
r,-n,- x,-

Based on this observation, we may establish a first theorem for discrete posynomial program-

ming.

.
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Theorem 1. Suppose {n,,n,,...,n,} are positive integers. Then, provided the dual program
is consistent and the feasible discrete solution space is nonempty, the mixed discrete posynomial
programming solution is globally optimal. Furthermore, the discrete dual program degree of
difficulty is 2q greater than that for the continuous dual program.

Proof:

By the preceding observation, the discrete primal problem can always be formulated as
a prototype posynomial program, which has been shown to be globally optimal (provided
feasibility/consistency relationships hold) under the dual program

maxv(8)=ilill(gi Js(n(rn)‘" is")(1’11 (H( ")")) [138]
with
;? 5.0, — (5, ‘8‘*”,%(,-;.5, 5;,a,.,,,)= 0 h=12..q [139]
.§18a¢+‘§1(); G,a,u) h=q+1,q+2,...k [140]
| 55=1 | [141]
=38 I=12..p [142]

j=1
Thus, there are k+p+1 equations in n+2g+p+m,+m,+...+m, unknowns. The discrete dual degree

of difficulty is given by
DOD=n—k—1+2q+’f‘,lm, [143]

which is 2q greater than that for the continuous dual problem given by equation [32]. Thus, the

SAIC
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Note that this theorem is not particularly useful without some idea of the nature of the
desired integer values n;. The following theorem is useful as an expression for the basic dual
variables. - R

Theorem 2. For the discrete dual program, the basic dual variables may be written in

terms of the nonbasic dual variables, the n;’s, and the nondiscrete primal variables as

Sk
r[ x {zm
j=q+l
5, =c, Lzls ] ; [144]
" (e A
() o ~A(3s) " (3(2))

for m=1,2,...,n.
Proof:
The global optimal solution is given at the equality of the arithmetic and geometric means,

i.e. when
[
c; _I'[lxj"=8,~v(5), i=12,...,n. [145]
j-

This is often referred to as the dual-to-primal transformation. Thus, we may write

5
( )I'Ix = (5) f[(r,n,)‘" “"1’1 H(%J . i=1,2,..,n  [146]
, j=1 i=l j=1 it

or

But
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x; =r;n;, j=12,..,9q=> [148]
;
o JETH from v fe{ (2]
S \" '::l =i\ %
- =4 — . m=12,...n [149]
Cm T x™
i=q+l
or
5 1-3, H xa"
(C—") fzat] m=12,...n [150]

TR ae3]

iam

The desired result follows by substituting

$8=1-85, m=12..n [151]

in the exponent. Use of this result combined with the dual linear equality constraints may help
define further avenues of solution.

" rable" an ial I

In this section, the term "posyseparable" is introduced, followed by techniques which may
simplify the solution of the dual discrete posynomial program, including partial invariance.

Definition: A posynomial function, f, is called "posyseparable" if each of its independent

variables may be isolated at least once, i.e., if it may be written

f= Zcux,+ZcHx [152]

im] j=
where the x,’s, ¢,’s, and ¢;’s are positive valued. Note that the term posyseparable, as applied
to posynomials, is less restrictive than the term separable (see separable programming) where

each independent variable is completely isolated in a functional sense from the remaining
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mdependent variables. Many posynomlals dlsplay the posyseparable property. Although this
property is not a necessary condition for existence or uniqueness of global optimal solutions for
discrete posynomial programs, it does allow for a straightforward dual-to-primal variable
conversion, which is often a nlrajbl;diraﬁvibiék to using dual methods. |

Theorem 3. If the objective function in a consistent and feasible discrete posynomial
program is posyseparable, then the basic dual variables may be written in terms of any of the q

discrete variables as

c -l c 8 c. 5, .
8..,=c..,[(—5"') 11 (—) n[g) (r,n,) e
o im] s =1

A
.:];[:(gw;(rqnq) ] j llfll(}gxa,,) [Iﬁl(%y} ":"' m=12,...k [153]
B =84 =08 + za¢a+§(}§laﬂaﬂ] h=1,2,...q [154]

Proof The dual program | is

maxv(8)=gl(; ) (g] (fly,n,)‘” “')(fl il (2 s
"

By + ): 8, — (B — 8,) + i(z 5 a,u) h=12,...q [156]

8., + z 8.a, + );(215'“1“] =0 h=q+1,q+2,...k [157]

za +T 8=l - [158]

=]
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u,=j§::18;, 1=1,2,...,p
Since f is posyseparable,
. xr=8,v®, m=12,..k
Also,
xX;=rn;, j=12,...,q
Therefore,

3.
Cms Loy S ) B4
( 5~}.. ‘.-13,( 5.-.] ,1}1(5.) (ﬁ(r,n,) ')(flu (Jr_I(aﬂ)’»

But
A s o X
Crs sm—v(ﬁ)-—c,,, 5,
or
0,.C
“t-__ metqe d,
X, -chqu
Thereforé,
8"“ 5.,22'_ . ﬁ C_,, 8, ,I:Ik C; (ﬁ 8- 511)
) 8.0 5 milE ) U
«(fl 28) (H( ")")>, m=1,2,...k
I=1\j=1 j=l ﬂ
Since
x¢=rqn¢
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[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]
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-1 - » Z:'a;v ™ cy 8 l-:i:: -lf'\""'
e ‘"’fll(z a;,} TEM “*,  m=1,2,..k  [167]

=1 =1 j=1 Oy

But

. ‘,
o, =(§£Z#(r,n,,)‘~) - [168]

.1}‘} " L ":gf‘i'é,'u
H(C_{') “tum=12,..,k [169]

For
" m<q-1 [170]

we may rewrite

n—k

§,=1-58-3 5, [171]

i=] i=]
izm

and the theorem is proved. Combining this result with the linear dual equations allows one to
use partial invariance to solve for basic dual variables in terms of at most one n;. Then, a series
~ ofdifferences in terms of the discrete and continuous dualrbfl;jéé{i;/’c functions may be minimized

as:
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Vi) -V, =V, ) [172]
Setting this difference to zero, we may write
' OpusCor s
CndXm — On,V.(0) = 5 (r,n)* = 8,,v.(9) [173]
{3
Cor o
=8u| ) V. [174]

which is a function of n, and the dual variables only. In general, partial invariance should be
used to solve the basic dual variables in terms of the dominant dual variables if one has that
knowledge for the problem at hand. A good starting point is to solve for the dual variables
corresponding to the discrete (primal) constraints in terms of the basic dual variables evaluated
in the neighborhood of their optimal continuous solutions.

A fair amount of derivation has indicated possible directions a dual approach may take
in a discrete posynomial program. The concept of posyseparability has been introduced to ease
the dual-to-primal transformation. The discrete dual program has been shown to have a degree
of difficulty 2q greater than the corresponding continuous dual program. A number of relatively
simple examples have been used to illustrate various facets of the dual approach. Primal and
dual approaches have been compared. Specific numerical and computer methods used to support
the dual approach are left for future development.

Figures 6.4-1, 2, and 3 show the optimal discrete design values of minimum system mass
per unit area, and optimal bumper and wall thicknesses vs projectile diameter, bumper/wall
separation, and projectile velocity, respectively, for the Nysmith predictor. The discrete
availability factor, r,, is 1/64 inches. Figure 6.4-1 reflects a constant meteoroid density. In

Figure 6.4-3, the impact angle remains constant at 0 degrees (normal).
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Figure 6.4-2. Optimal Discrete Design Value vs Bumper/Wall Separation for Nysmith

Predictor
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Figure 6.4-4 shows the sensitivity of minimum system mass per unit area to bumper
thickness availability factor, r,. The discrete and continuous objective functions are equal when i
the continuous bumper thickness is an integer multiple of the bumper thickness availability
factor as shown in Figure 6.4-5. This occurs at numerous locations over the range considered. -
Note that when r, is small, the discrete bumper thickness is closer in value to the continuous _
bumper thickness. Asr, grows, this incidence of equality naturally decreases while the deviations -
from the continuous minimum mass per unit area grow in value. Beyond the optimal continuous
value of the bumper thickness, the objective function continues to grow indefinitely, because
the availability factor is dominating the desired continuous solution. =
=
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Figure 6.4-5. Optimal Bumper Thickness vs Bumper Thickness Availability Factor for

the Nysmith Predictor

Figures 6.4-6, 7, and 8 show the optimal discrete design values of minimum system mass

per unit area, and optimal bumper and wall thicknesses vs projectile diameter, bumper/wall

separation, and projectile velocity, respectively, for the Burch predictor. The bumper thickness

availability factor is 1/64 in. Figure 6.4-6 reflects a constant projectile density as given in

equation [141]. In Figure 6.4-8, the impact angle remains constant at 0 degrees (normal).
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Figure 6.4-9 shows the sensitivity of minimum system mass per unit area to bumper
thickness availability factor, r,. The discrete and continuous objective functions are equal when
the continuous bumper thickness is an integer multiple of the bumper thickness availability
factor as shown in Figure 6.4-10. This occurs at numerous locations over the range considered.
Note that when 1, is small, the discrete bumper thickness is closer in value to the continuous
bumper thickness. Asr, grows, thisincidence of equality naturally decreases while the deviations
from the continuous minimum mass per unit area grow in value. Beyond the optimal continuous
value of the bumper thickness, the objective function continues to grow indefinitely, because

the availability factor is dominating the desired continuous solution.

SAIC

An Employee-Owned Company



116

-t
»

Burch Predictor

Space Debris Example
D.=1.00.cm
S=25.0cm
V =9 km/sec

-
(2]

~

-t
.
b

—h

ll---l 1 g l = X a

0.02 0.04 0.06 0.08 0.1 0.12 0.14
Bumper Thickness Availability Factor (in.)

Discrete Continuous

o
]
-

Minimum System Mass Per Unit Area (gm/cm2)

—_—— e !j","

Figure 6.4-9. Minimum System Mass Per Unit Area vs. Bumper Thickness
A\;'ﬁfl;tiiifty Factor for the Burch Predictor

®

An Employee-Owned Company

Bl |

al

oW W ail T

' THT DR (INE AT ! i B

(TRl



117

0.35

o
w

Burch Predictor
[ | Space Debris Example /
0.25 O="1.00 G
i S$=25.0cm /
V.-=8.km/sec

Optimal Bumper Thickness (cm)

0.2 /
0.15
0.1 *‘l / - L ... u
0.05 1 1 1 | 1 1
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Bumper Thickness Availability Factor (in.)
Discrete  Continuous
—— -
Figure 6.4-10. Optimal Discrete and Continuous Bumper Thickness vs Bumper
Thickness Availability Factor for the Burch Predictor
The discrete Wilkinson predictor optimization algorithm is derived using the dual method.

Theorem 4. The combined discrete/continuous Wilkinson algorithm is given by

0.364D*p2V cos(6

¢ = PpV cos®) [175]
L,S°p,
1.207D%p, ( V cos(8) }*

Wy =—— p’( °;’:( )] [176]

W W
3. 4 =—, =— 177
e 2p, Pu 2p, {77l

Dp Wo
4. If—E>1, =| —— 178
fpltl,k & [zplrl],‘i_ L178]
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Check both values and return to step 3.

Proof: The primal objective function is given by

G
W=pt, +p.,=pity +-t-1-

and is constrained by t, =1, n,. The dual program is given by

But

max v(0) =(

S.t.

P 5 € :
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t,=rn, AV(E©) =-p81j [196]
1
3, 1-8,
Piny (5_)_1 € 28,-1
=73 -\51] (1—&] (ryny) [197]

5-1 -8,
NN
rl_ 81 1—51

1-8 1™
3=

1 Cl 5] :IQ e
=2pal 2 200
L 25 (200
But this gives

22_6f &

= p,rini(1-8,)=c,5, [202]
2.2

= §, = —L [203]

1= 2.2
G +pinm

Now, minimizing the difference between the discrete and continuous dual objective functions

for Wilkinson gives
minv(8)— W, =%—W& [204]
1
c+piring
= p‘rln{—'m]— Wo: [205]

At zero this minimum gives
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Dp,
Pty

Wo= pl‘l,""pz[:?;j [216]
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5 2 2 - n 2 12
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<1, [215]

M L, S L SDp, L,
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and the main result is proved. Note that the justification for using nearest integer is the parabolic

form of the quadratic equation
fln)= plrlznlz -rWen, +¢,=0, W:c =4c,p, [224]
This may be transformed to
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Figures 6.4-11, 12, and 13 show the optimal discrete design values of minimum system
mass per unit area, and optimal bumper and wall thicknesses vs projectile diameter, bumper/wall
separation, and projectile velocity, respectively, for the Wilkinson predictor. In Figure 6.4-11,
the projectile densi& vanes ﬁm ﬁaﬁletcr according to equations [13] and [14]. In Figure

6.4-13, the impact angle remains constant at 0 degrees (normal). The optimal bumper and wall

thicknesses for the Wilkinson predictor are approximately equal due to the similarity in bumper

LR

and wall material densities.
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the availability factor is dominating the desired continuous solution.
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Figure 6.4-14 shows the sensitivity of minimum system mass per unit area to bumper
thickness availability factor, r,. The discrete and continuous objective functions are equal when
the continuous bumper thickness is an integer multiple of the bumper thickness availability
factor as shown in Figure 6.4-15. This occurs at numerous locations over the range considered.
Note that when r, is small, the discrete bumper thickness is closer in value to the continuous
bumper thickness. Asr, grows, thisincidence of equality naturally decreases while the deviations
from the continuous minimum mass per unit area grow in value. Beyond the optimal continuous

value of the bumper thickness, the objective function continues to grow indefinitely, because
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6.5 Conclusions and Recommendations for Section 6
Conclusions
In conclusion, global (and sometimes analytic) optimization of discrete posynomial
programs can be performed using dual approaches coupled with partial invariance techniques.
However, primal methods require less "pencil and paper" effort than dual methods and are more
easily applied to most problems. Primal methods do not generally obtain global solutions for
the discrete posynomial program. Furthermore, the dual method may be advantageous in cases
where the objective function may be sufficiently separable, since posyseparable programs do

not require solutions of coupled nonlinear equations in the dual-to-primal variable transfor-
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mation. For protective structures design optimization problems, global nonlinear design opti-
mization can be performed for the Wilkinson, Burch, and N}sﬁﬁghimpaa predictors. In these
cases, the optimal ratio of bumper mass per unit area to total mass per unit area may vary with
mission, environment, projectile mass, and velocity regime. Additionally, there is a large
incentive for increasing the bumper/wall separation from 10 to 15 cm for all three predictors
decreasing design sensitivity to bumper/wall separation. However, the Wilkinson and Nysmith
predictorsreflectincreasing design sensitivity to projectile velocity, while the Burch relationship
is decreasing.

It is recommended that other primal methods be investigated, including penalty functions
supported by derivative search Tethods and feasible direction developments for discrete
posynomial programs. Additionally, computer algorithms should be implemented based on
current dual codeé and modifications td the'dirscrete problem. The dua,lr incthod should also be
extended to signomials. In the area of spacecraft protective structures design optimization, other
hypervelocity impact predictors should be investigated. The discrete methods developed in this
study should also be applied to other structural design problems. Finally, alternate protective

materials and configurations should be investigated.
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7 HYPERVELOCITY IMPACT TEST SAMPLE DAMAGE ASSESSMENTS

Hypervelocity impact test sample damage assessments were performed by UAH. Posynomial
regression analysis was performed by SAIC, and is available in Discrete Posynomial Program-

The purpose of this effort is to show a posynomial regression analysis of existing hypervelocity

impact test data, followed by the global optimization of the ensuing structural design problem
incorporating the predictor. A posynomial (polynomial with positive coefficients and positive-
valued independent variables, but not necessarily positive exponents) form is chosen for several
reasons:

1. Posynomials can be globally optimized using the nonlinear geometric programming technique.
2. Many previously developed predictors (by Nysmith, Madden, Wilkinson, Richardson, etc.) are
of posynomial form.

3. Posynomial regression problems may, under certain circumstances, be solved using lincar
regression techniques, which are easier to solve and measure statistically.

This effort focuses on the question of whether posynomial regression can be performed in a
statistically significant manner. A secondary goal of the study is to provide global optimization of
the design problem formulated using the derived posynomial predictor.

The development and analysis of a posynomial hypervelocity impact predictor suitable for
the design of protective structures for spacecraft exposed to the meteoroid and space debris environs
is presented in the reference above. The posynomial form is first developed with a number of
estimated parameters. This model is next transformed into a linear regression model. Regression
analysis is performed using a least squares approach to estimate the parameters, followed by analysis

of variance, F-tests, and correlation coefficient examination. Residual values are then plotted against

SAIC.
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the predicted and variable values. Next, the model is transformed into a hypervelocity impact
penetration predictor suitable for design. Finally, the design problem is formulated and globally
optimized using posynomial programming. Results show that statistically significant posynomial
impact predictors can be developed using linear regression approaches.

The main conclusion of this effort is that it is possible to develop a statistically significant
posynomial hypervelocity impact predictor with a fairly large number of impact tests and a fairly
small number of predictor variables. Although greater variation can be explained by considering
posynomials with more than one term, the ability to transform the posynomial into a form suitable
for linear regression is lost. Furthermore, since it is generally desirable to have 10 or more data
points per predictor variable, the increased number of term values might actually decrease the

confidence in the predictive capability of the model as measured by the analysis of variance.
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8 ANALYSIS OF PROJECTILE SHAPE EFFECTS

SAIC developed posynomial regression techniques and combined them with posynomial
optimization techniques for application to this area. These techniques are available for immediate
application to the test data resulting from projectile shape effects testing. Currently, limited test
data produces unclear results when attempts are made to correlate data from various projectile
shapes. Results are inconclusive. Further investigation of the projectile shape effects could include
methodologies found in sources such as "A Preliminary Investigation of Projectile Shape Effects
In Hypervelocity Impact of a Double-Sheet Structure,” by R. H. Morrison, NASA-TN-6944, August

1972, but will remain inconclusive until further test are performed.
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10 APPENDICES

APPENDIX A. POLYPRIME.FOR:
A GENERALIZED PRIMAL OPTIMIZATION TECHNIQUE USING PENALTY
FUNCTIONS

DIMENSION C(100),A(100,100),X(100),M(100),CI(100,100)
DIMENSION AI(100,100,100),XKL(100),XHIGH(100),XLOW(100)
DIMENSION RJ(100),IDIS(100),XOPT(100),XEXP(100)
DIMENSION EPS 1(100),EPS2(100)
OPEN(UNIT=10,TYPE="OLD’ , ACCESS="SEQUENTIAL")
OPEN(UNIT=11,TYPE="NEW’ , ACCESS="SEQUENTIAL")

*++*[NTTIAL SEED FOR RANDOM SEARCH***
ISEED = 91411
*#%NUMBER OF CASES TO RUN***
READ(10,*) NRUNS
DO 10 IR=1,NRUNS
+++]OPT=1 FOR RANDOM SEARCH, 2 FOR HOOKE AND JEEVES***
READ(10,%)IOPT
*+*NUMBER OF TERMS IN OBJECTIVE FUNCTION***
READ(10,*)N
***NUMBER OF INDEPENDENT VARIABLES***
READ(10,*)K
**¥NUMBER OF CONSTRAINTS***
READ(10,*)P
DO 151=1,N
*++COEFFICIENT FOR EACH TERM IN OBJECTIVE FUNCTION*#**
READ(10,*)C(I)
DO 20J=1K
+++*EXPONENT FOR OBJ. FUNC. BY VARIABLE AND TERM***
READ(10,%)A(LJ)
20  CONTINUE
15 CONTINUE
DO 25L=1P
*+*NUMBER OF TERMS BY CONSTRAINT NUMBER***
READ(10,*)M(L)
***RIGHT-HAND-SIDE BY CONSTRAINT NUMBER***
READ(10,%)XKL(L)
DO 30 I=1, M(L)
***COEFFICIENT BY TERM AND CONSTRAINT NUMBER***
READ(10,*)CI(I,L)
DO 35J=1K
*+*EXPONENT BY TERM, VARIABLE, AND CONSTRAINT NUMBER***

READ(10,*)AI(I,J,L)

30 CONTINUE

35 CONTINUE
An Employee-Owned Company



25 CONTINUE
DO 361=1,K

#++[DIS = 1 FOR DISCRETE VARIABLES***

READ(10,*)IDIS(I)

IF(IDIS(I).EQ.1) THEN -
*+*DISCRETE FACTOR BY VARIABLE*** .. . ...~

READ(10,*)RI(I)

ENDIF
36 CONTINUE
*+*INITIAL PENALTY FUNCTION ACCELERATION FACTOR*#**

ACCEL=1.0

IFIOPT.EQ.) THEN  oooiii o 0 v s ol e o s

*+*RANDOM SEARCH***

CALL RSEARCH([DIS ISEED,N K,P,C,A M,XKL, CI AI RJ,ACCEL,X)

GO TO 1000
ENDF R
IF(IOPT.EQ.2)THEN

*#+HOOKE AND JEEVES***

CALL HJ(IDIS N,K,P,.CAM XKL, CIALRJ, ACCEL X)
ENDIF

1000 CONTINUE

10 CONTINUE ,

STOP - CizmmmE e s
END

SUBROUTINE RSEARCH(IDIS,ISEED,N,K,P,C,A M,XKL,CLAI, RJ,ACCEL X) .

DIMENSION C(100),A(100,100),X(100),M(100),CI(100,100)
DIMENSION AI(100,100,100),XKL(100),XHIGH(100),XLOW(100)
DIMENSION RJ(100),IDIS(100),XOPT(100),XEXP(100)
DIMENSION EPS1(100),EPS2(100), MULT(100)

#+*FRACTION OF INTERVAL REQUIRED AND CONFIDENCE LEVEL***

READ(10,*)FRS,XPRS
***NUMBER OQF SEARCH POINTS ***

NPOINTS = IFTX(-1.0*ALOG(1.0-XPRS)/(FRS**K)+1.0)
WRITE(6,*)’YOU WILL BE SEARCHING’ , NPOINTS, POINTS’
DO401=1K
***LOWER AND UPPER BOUNDS BY VARIABLE***
READ(10,*)XLOW(),XHIGH(I)
40 CONTINUE

***INITIALIZING NUMBER OF DISCRETE POINTS AND VARIABLES***

DPOINTS=1.0
NDVAR=0
DO411=1K
IFDISH.EQ.)THEN . .
NDVAR=NDVAR+1

146

***CALCULATES TOTAL NUMBER OF FEASIBLE DISCRETE POINTS IN INTERVAL***

DPOINTS=(XHIGH(I)-XLOW(I))/RI(1)*DPOINTS
ENDIF

41 CONTINUE S

*#%[F THE PROBLEM ISNT MIXED*** %
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105 IF(NDVAR.EQK)THEN
+*»*]FTHE INTERVAL IS NOT DENSE IN DISCRETE FEASIBLE POINTS RELATIVE TO***
+++THE NUMBER YOU WERE WILLING TO SEARCH ANYWAY, JUST SEARCH FEASI-
BLE POINTS***
IF(DPOINTS.LE.NPOINTS)THEN
DO 42 I=1K
MULT@)=IFIX(XLOW@/RI(D)+1
»*+] OWEST DISCRETE FEASIBLE POINT***
X{DO=MULT{*RI[)
42  CONTINUE
ICOUNT=0
DO 44 J=1K |
**x*CONTINUE AS LONG AS DISCRETE POINTS ARE FEASIBLE***
47  IF(X()).LE.XHIGH(J))THEN
CALL OBJ(IDIS,C,A,X,CLALXKL,N,K,P,M,RJ,FUNC, ACCEL,XPF)
IF(ICOUNT.EQ.0)THEN
*«%*INTTIALIZE OPTIMAL VALUES***
FUNCOPT=FUNC
XPFOPT=XPF
DO 431=1,K
XOPTM=X()
43 CONTINUE
ENDIF
ICOUNT=ICOUNT+1
IF(FUNC.LT.FUNCOPT)THEN
*%*UPDATE OPTIMAL VALUES***
FUNCOPT=FUNC
XPFOPT=XPF
DO 46 L=1,K
XOPT(L)=X(L)
46  CONTINUE
ENDIF
***[NCREMENT DISCRETE SEARCH POINTS***
MULT())=MULT()+1
X(@H=MULT{J)*RI(J)
GO TO 47
ENDIF
*#*xJPDATE OPTIMAL VALUES***
DO 48 I=1 K
X(D=XOPT()
48  CONTINUE
44  CONTINUE
**%  WRITE(6,*)FUNCOPT,XPFOPT,(XOPT(I),I=1,K)
GO TO 99
ENDIF
ENDIF
*%+[F THE PROBLEM IS MIXED OR CONTINUOUS OR FULLY DISCRETE WITH A DENSE
*»**COVERING OF FEASIBLE POINTS IN THE INTERVAL, PROCEED WITH STANDARD

- SAIC.
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#++SEARCH***
DO 45T=1,NPOINTS = = mammers aeeid “imr oo e
DO 50J=1,K
+++CALCULATE RANDOM SEARCH POINT***
X())=XLOW(J)+RAN(ISEED)*(XHIGH(})-XLOW()) - -~ -~ - -
CONTINUE

CALL OBJ(IDIS, C,A,X,CI AI,XKL N K,P,M RJ,FU NC,ACCEL,XPF)
IF(LEQ.)THEN -
*+*INITIALIZE OPTIMAL VALUES***
FUNCOPT=FUNC
XPFOPT=XPF
DO85SL=1K
XOPTL)=X(L)
85 _ CONTINUE
IE(FUNC.LT. FUNCOP’I'j'I'HEN '
**%xJPDATE OPTIMAL VALUES***
FUNCOPT=FUNC
XPFOPT=XPF
DO9L=1K
XOPT(L)=X(L)
90 CONTINUE
ENDIF
*4&  WRITE(6,*)XPFOPT
45 CONTINUE
+#+*DOES PENALTY CONVERGE?*##
99 IF(XPFOPT.LE.0.001)THEN
WRITE(11,*)"MIN. OBJ. FUNC. VALUE ="FUNCOPT
DO9L=1K
WRITE(ll *)’X’,L,’=" XOPT(L)
95 CONTINUE o
GO TO 100 ,
ENDIF
*++JPDATE PENALTY FUNCTION ACCELERATING FACTOR IF PENALTY DOESNT
***CONVERGE#**
ACCEL=ACCEL*10.0
GO TO 105
100 CONTINUE - : :
SUBROUTINE HJ(IDIS,N,K,P,C,A,M,XKL,CI,ALLRJ,ACCEL X)
DIMENSION C(100),A(100,100),X(100),M(100),CI(100,100)
DIMENSION AI(100,100,100),XK1(100),XHIGH(100),XLOW(100)
DIMENSION RJ(100),IDIS(100),XOPT(100),XEXP(100)
DIMENSION EPS1(100),EPS2(100)
IDIFF=0
DO 1101=1K
»*»*READ INITIAL POINT, INITIAL EXPLORATORY VALUES, AND FINAL EXPLOR-

50
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***V ALUES***
READ(10,%)X(1),EPS 1(T),EPS2(T)
XOPT(M=X(T)
110 CONTINUE
CALL OBJ(IDIS,C,A,X,CLALXKL,N,K,P,M,RJ FUNC,ACCEL,XPF)
s WRITE(11,*)’1’,FUNC
**%INITIALIZE OPTIMAL VALUES***
FUNCOPT=FUNC
XPFOPT=XPF
%%  WRITE(11,*)FUNCOPT XPFOPT
"DO115I=1K e
»++PERFORM EXPLORATORY SEARCH FROM BASE POINT***
XEXPM=X(D
X(D=XI+EPS1(T)
CALL OBJ(IDIS,C,A,X,CLAILXKL,N,K,P,M,RJ,FUNC,ACCEL,XPF)
%%  WRITE(11,*)’2’ FUNC
IF(FUNC.GT.FUNCOPT)THEN
**+GO IN OTHER DIRECTION***
X(D=X(D)-2.0%EPS1(T)
wre DO 1134 KLM=1 K
weh WRITE(11,%)’KLM=" KLM,X(KLM)
»**» 1134  CONTINUE
CALL OBJ(IDIS,C,A X,CLALXKL.N,K,P,M,RJ,FUNC,ACCEL,XPF)
%%  WRITE(11,*)’3",FUNC
IF(FUNC.LT FUNCOPT)THEN
***JPDATE OPTIMAL VALUES***
FUNCOPT=FUNC
XOPT(M)=X(I)
XPFOPT=XPF
IDIFF=1
ane DO 1125 JIK=1,K
wow WRITE(11,%)’111’, FUNCOPT XOPT(JIK),XPFOPT
s++ 1125  CONTINUE
GO TO 111
ENDIF
GO TO 111
ENDIF
#»xUPDATE OPTIMAL VALUES*#**
XOPTM=X{)
XPFOPT=XPF
FUNCOPT=FUNC
IDIFF=1
e DO 1126 JIK=1,K
s WRITE(11,%)’ 115’ FUNCOPT XOPT(JIK),XPFOPT
#++ 1126  CONTINUE
111 CONTINUE
115 CONTINUE
135 IF(IDIFF.EQ.1)THEN

149
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*++F NEW POINT IN EXPLORATION IS DIFFERENT FROM BASE POINT, PERFORM

+++PATTERN SEARCH***
XEXP()=XEXP(I)+2.0*(XOPT(I)-XEXP(I))
X[D=XEXP(I)
120 CONTINUE ) _
ENDIF S -
+++OTHERWISE, REDUCE EXPLORATORY VALUES (EPSILONS)***
IF(IDIFF.EQ.0)THEN |
GO TO 140
ENDIF
IDIFF=0
CALL OBJ(IDIS,C,A,X,CLALXKL,N.K,P,M.RJ.FUNC,ACCEL XPF)
««  WRITE(11,*)’4’FUNC "~ —
IF(FUNC.LT.FUNCOPT)THEN
*++UPDATE OPTIMAL VALUES***
FUNCOPT=FUNC ~ ~ :
XPFOPT=XPF
DO 121 I=1 X
“XOPT(M=X{)
«« DO 1127 IK=1 K
s WRITE(11,*)’121’ JFUNCOPTXOPT(IK), XPFOPT
«*+ 1127  CONTINUE
121 CONTINUE
175 DO 1251=1K
***PERFORM (NEW) EXPLORATION***
XM=XD+EPS1M)
CALL OBJ(IDIS,C,A.X,CLALXKL,N,K,P,M,RJ,FUNC, ACCEL,XPF)
#+  WRITE(11,*)’5’ FUNC
IF(FUNC.GT.FUNCOPT)THEN
+++GO IN OTHER DIRECTION***
X(@)=X()-2.0*EPS 1(T)
b DO 1136 KLM=1,K
e WRITE(11,*)’KLM=",KLM,X(KLM)
*++ 1136 CONTINUE
CALL OBJ(IDIS,C,A,X,CLAILXKL N,K,P,M,RJ,FUNC,ACCEL,XPF)
*++  WRITE(11,*)’6’,FUNC
IF(FUNC.LE. FUNCOPT)THEN
+++UPDATE OPTIMAL VALUES***
FUNCOPT=FUNC -
XOPT(M)=X{)
XPFOPT=XPF
o DO 1128 JIK=1,K
4 WRITE(11,*)’175’,FUNCOPT,XOPT(JIK),XPFOPT
*++ 1128  CONTINUE
IDIFF=1
ENDIF
GO TO 125
ENDIF

*# %[ JPDATE OPTIMAL VALUES*** %
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XOPT(M=X()
IDIFF=1
FUNCOPT=FUNC
XPFOPT=XPF
ko DO 1129 JIK=1,K
ok WRITE(11,*)' 140’ FUNCOPT ,XOPT(JIK),XPFOPT
*kx 1129 CONTINUE
125 CONTINUE
140 IF(IDIFF.EQ.0)THEN
DO 130I=1,K
++*REDUCE EXPLORATORY VALUES WHEN NO IMPROVEMENT IS MADE IN
EXPLORATION***
EPS1(D=EPS1(1)/2.0
IFEPS1(I).LT.EPS2(I)) THEN
*#*CHECK ENDING CONDITION BASED ON EXPLORATORY VALUES***
GO TO 150
ENDIF
130 CONTINUE
***GO EXPLORE SOME MORE***
GO TO 175
ENDIF
ENDIF
DO 137 KIM=1,K
*+*RETAIN PREVIOUS BASE POINTS FOR FUTURE PATTERN MOVES***
X(KIM)=XOPT(KIM)
137 CONTINUE
IF(IDIFF.EQ.0)THEN
GO TO 140
ENDIF
*+*MAKE PATTERN MOVE***
GO TO 135
150 CONTINUE
+++CHECK PENALTY VALUE FOR CONVERGENCE***
IF(XPFOPT.LE.0.001)THEN
DO 1130 JIK=1,K
WRITE(11,*)’MIN. OBJ. FUNC. VALUE =’ FUNCOPT
WRITE(11,*)’PENALTY =’ XPFOPT
WRITE(11,*)’ ACCELERATION FACTOR =", ACCEL
1130 CONTINUE
DO 170L=1,K
WRITE(11,*)’X",L,’=" XOPT(L)
170 CONTINUE
GO TO 200
ENDIF
*++JPDATE PENALTY FUNCTION ACCELERATION FACTOR IF CONVERGENCEIS NOT
**%x A CHIEVED*#** :
ACCEL=ACCEL*10.0
GO TO 110

R SAIC
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RETURN
END | |
SUBROUTINE OBJ(IDIS,C,A X,CLALXKL,N,K.P,M,RJ,FUNC,ACCEL,XPF)
DIMENSION C(100),A(100,100),X(100),M(100),C1(100,100)
DIMENSION AI(100,100,100),XKL(100), XHIGH(100), XLOW(100)
DIMENSION RJ(100),IDIS(100),XOPT(100),XEXP(100)
DIMENSION EPS1(100),EPS2(100)
FUNC=0.0
DO 55 U=1,N
#++INTTIALIZE PRODUCT VALUES***
XPROD=10 o
DO60UK=1K -
whwkn WRITE(6, X WK) AQU.UK). S
+++ZERO EXPONENTS GIVE PRODUCT VALUES OF 1. Os**
IFABS(AQTUK) LEQOOOOOUTHEN

ENDIF
***7ERO VARIABLE VALUES GIVE PRODUCT VALUES OF ZERO*** e e
IF(ABS(X(IJK)).LE.0.0000001)THEN s
XPROD=0.0
GO TO 60
ENDIF
*%*COMPUTERS DONT RAISE NEG. VALUES TO EXPONENTS *#*
IF(X(JK).LT.0.0)THEN
X(UK)=ABS(X(UK))

*%x*COMPUTE PRODUCT VALUES FOR OBJ. FUNCTION***
XPROD=XPROD*X(IK)**A(1J,1JK)
60 CONTINUE . .
*++COMPUTE ORIGINAL OBJECTIVE FUNCTION VALUE***
FUNC=FUNC+C(1J))*XPROD
55 CONTINUE
XPF=0.0
DO 65 J=1,P
**¥INITIALIZE CONSTRAINT SUMS***
CONSUM=0.0 -
DO 70 LI=1, M)
¥**INTTIALIZE CONSTRAINT PRODUCTS***
CONPROD=1.0
DO75MJ=1 K
##+*UPDATE CONSTRAINT PRODUCTS***
CONPROD=CONPROD*X(MJ)**AI(LJ,MJ,1J)
75 CONTINUE
**+*UPDATE CONSTRAINT SUMS***
CONSUM=CONSUM+CI(LJ,IJ)*CONPROD
70  CONTINUE-==——
*+*+*COMPUTE PENALTY AND FUNCTION FOR <= CONSTRAINTS***
IF((CONSUM-XKL(1J)).GT.0.0)THEN e
XPF=XPF+ACCEL*(CONSUM-XKL(I))**2.0
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FUNC=FUNC+XPF
ENDIF
65 CONTINUE
DO 80 UJ=1,K
**+COMPUTE PENALTY AND FUNCTION FOR DISCRETE CONSTRAINTS*** -
- IF(IDIS(1J).EQ.1)THEN
XPF1=ACCEL*(ABSXI)/RIW)-IFIXXW)/RIW)+0.5)))**0.5
XPF=XPF+XPF1
FUNC=FUNC+XPF1
ENDIF
80 CONTINUE
RETURN
END
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APPENDIX B. IMPACT10 SOURCE CODE LISTING
DIMENSION XPV(100), SOLAR(1188), XPSIV(125), XMETIV(100)

DIMENSION XDEBOLDIV(100)
DIMENSION ISWITCH(10)
character BUMPER_NAME(50)*14,WALL_NAME(50)*11
CHARACTER BUMPER_MAT_NAME*40 , WALL_MAT " NAME*40
CHARACTER BUMPER_TYPE_NAME#*40 WALL TYPE_NAME*40
CHARACTER SHAPE*40
character Outdir*40
character line1*80
character line2*80-
data cdate / ’Run_Date °/
data cume/ 'Run_Time */
call gettim (1hr imin, isec, i100th)
call getdat ( h%'r imon, iday)
OPE] =27, STATUS— old’, ACCESS= ’SEQUENTIAL
+ FILE=’config.pgm )
read(27,2312)outdir
read(27,2312)outdir
2312 format(A40)
close(27) -
OPEN(UNIT-23 STATUS="OLD’,ACCESS= ’SEQUENTIAL FILE— CRAFI‘INP)
OPEN(UNIT=26,STATUS="OLD’, ACCESS="SEQUENTIAL’,FILE="GEOMETRY.INP’)
UK = INDEX(OUTDIR,’ ’) -1
OPEN(UNIT=27,STATUS= "unknown’, ACCESS="SEQUENTIAL’,
+ FILE= outdir(l :1JK) // 'Z9AAAAAT.PGM’)
OPEN(UNIT=28,STATUS="unknown’' ACCESS="SEQUENTIAL’,
+ FILE="PROJECT.OUT’)
OPEN(UNIT=29,STATUS="unknown’ , ACCESS="SEQUENTIAL"’,
+ FILE="results.dat’)

open(unit=33,status="old’ ,access="sequential’,
+  file="project.hdr’)
write(28, "(1x, A10,1x, 12.2, 1H:, 12.2, 1H:, I12.2, 1H,,
+12.2)’) ctime, ihr, imin, isec, 1100th
write(28, '(1x, A10,1x, 12.2, 1H-, 12.2, 1H-, 14.2)’)
+ cdate, imon, iday, iyr
do 6008i=1,6
read(33,6007)linel
write(28,6007)linel
6008 continue
close(unit=33)
write(*,*)’ IMPACT10V -- SAIC/ Huntsville’
write(*,*)’ ’
write(*,*)
write(*,*)’Status - Initializing Files’

®
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C
C READ Static Data Files
C

FILE="FLUXFAC.DAT’)
DO 222 KI=1,101
READ(14,*)JI.XPSIV(JI)
222 CONTINUE
CLOSE (UNIT = 14)
OPEN(UNIT=14,STATUS="OLD’,ACCESS="SEQUENTIAL’ ,FILE="SOLAR1.FLX")
DO 223 KI=1,1188
READ(14,*)SOLAR(KD
223 CONTINUE
CLOSE (UNIT = 14)
OPEN(UNIT=14,STATUS="OLD’,ACCESS="SEQUENTIAL’ FILE="METVEL.INP’)
DO 224 KI=1,72
READ(14,*)XMETIV(KI)
224 CONTINUE
CLOSE (UNIT = 14)
OPEN(UNIT=14,STATUS="OLD’, ACCESS="SEQUENTIAL’,
+ FILE="DEBOLDVE.DAT’)
DO 225 KI=1,16
READ(14,%)IV . XDEBOLDIV(IV)
225 CONTINUE
CLOSE (UNIT = 14)

OPEN(UNIT=14,STATUS="OLD’,ACCESS="SEQUENTIAL’,-

c
¢ Read PSDOC controlling switches and set impact10 variables accordingly

c
OPEN(UNIT=14,STATUS= ’OLD’ ACCESS="SEQUENTIAL’,
+ FILE="SWITCH.INP’ )
DO 226 KI=1,10
READ( 14,*)ISWITCH(KI)
226 CONTINUE
CLOSE (UNIT = 14)

NENVIRON = ISWITCH(1)
IBUMPER_TYPE=ISWITCH(2)
IBUMPER_MATERIAL=ISWITCH(3)

IWALL_TYPE = ISWITCH(4)
ITWALL_MATERIAL=ISWITCH(5)
ISW6 = ISWITCH(6)
ISW7 = ISWITCH(7)
ISW8 = ISWITCH(8)
C NOTE: CURRENTLY WE ARE NOT MAKING USE OF ISWITCH(9)
IGRAPH_TYPE=ISWITCH(10)

C Open appropriate files for environment depending on switch
settings.

° SAIC

a
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IF (NENVIRONEQ.I) THEN
OPEN(UNIT=20,STATUS="OLD’,ACCESS="SEQUENTIAL’,
+ FILE="NEWDEBRILINP’)
END IF
IF (NENVIRON.EQ.2) THEN
OPEN(UNIT=20,STATUS="OLD’, ACCESS="SEQUENTIAL’,
+ FILE="OLDDEBRIINP’)
END IF
IF (NENVIRON EQ. 3) 'I'I-IEN
OPEN(UNIT=20,STATUS="OLD’,ACCESS="SEQUENTIAL’,
+ FILE='"NE_MET.INP’)
END IF
C Open appropnate files and read data from bumper database if
the table data is used rathcr than the smglc matenal (paramctnc)
settings. - . . LR e e ez .
C
BUMPER DATABASE

Oio (@ Relit)

F (IBUMPER TYPE EQ 1) THEN

BUMPER_TYPE_NAME="Bumper Material Databasc

IF (IBUMPER_MATERIAL.EQ.1) THEN
BUMPER_MAT NAME="Aluminum Alloy”
OPEN(UNIT=30,STATUS="OLD’ ACCESS—’SEQUENTIAL

+ FILE=’ALBUMP.INP’)
OPEN(UNIT=32,STATUS= ’OLD’,ACCESS= ’SEQUENTIAL
+ FILE="ALBM.TBL")

ELSE IF IBUMPER_material. EQ.2)THEN
BUMPER_MAT_NAME-="Titanium Alloy’
OPEN(UNIT=30,STATUS="OLD’,ACCESS= SEQUENTIAL

+ FILE="TIBUMP.INP’)
OPEN(UNIT=32,STATUS="OLD’, ACCESS="SEQUENTIAL"’,
+ FILE="TITBM. TBL")

ELSE IF (IBUMPER_MATERIAL.EQ.3)THEN
BUMPER_MAT_NAME-="Steel Alloy’ .
OPEN(UNIT=30,STATUS="OLD’, ACCESS TSEQUENTIAL

+ FILE="STBUMP.INP’)
OPEN(UNIT=32,STATUS="OLD’,ACCESS= ’SEQUEN'I'IAL
+ FILE='STBM.TBL’) e -

ELSE IF (IBUMPER _ MATERIALEQ 4) THEN = o
BUMPER_MAT_NAME-="Inconel Alloy’
OPEN(UNIT=30,STATUS="OLD’ ACCESS—’SEQUENTIAL

+ FILE=INBUMP.INP’) - - -
OPEN(UNIT=32,STATUS= ’OLD’ ACCESS="SEQUENTIAL"’,
+ FILE="INCBM.TBL’)

ELSE IF (IBUMPER_MATERIAL.EQ.5)THEN
BUMPER_MAT_NAME="Graphite Alloy’
OPEN(UNIT=30,STATUS= ’OLD ACCESS "SEQUENTIAL’,

+ FILE="GRBUMP.INP’)
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OPEN(UNIT=32,STATUS="OLD’,ACCESS="SEQUENTIAL’,
+ FILE="GRALBM.TBL’)

ELSE
write(*,*)’Input Error from PSDOC interface -’
write(*,*)’Program Terminated with internal error.’
write(*,*)’Bad Ibumper_material switch. ’
goto 11

ENDIF

C Read Number of bumpers in selected table
Read(30,31)nbump
31 format(110)

¢ Read Table files for Material names
¢ Skip 7 line header first
DO 5010 KI=1,7

READ(32,*)

5010 CONTINUE
DO 627 KI=1,nbump

READ(32,6000,END=628)BUMPER_NAME(KI)
627 CONTINUE
6000 format(al4)

628  CLOSE (UNIT = 32)

¢ For parametric settings, open bumper.inp using same file handle as table
¢ setting. This will allow us to use the same code regardless of the method
¢ chosen.

C
C SINGLE BUMPER MATERIAL

C

else IF IBUMPER_TYPE.EQ.2) THEN
BUMPER_TYPE_NAME-="Single Bumper Material’
OPEN(UNIT=30,STATUS="OLD’, ACCESS="SEQUENTIAL’,

+ FILE="BUMPER.INP’)

NBUMP =1

else
write(*,*) Input Error from PSDOC interface -’
write(*,*)’Program Terminated with internal error.’
write(*,*)’Bad Ibumper_type switch. ’
goto 11

ENDIF

C Open appropriate files and read data from wall database if
¢ the table data is used rather than the single material (parametric)
((:: settings.

C**#************

C SELECT WALL MATERIAL (SINGLE /DATABASE)

C***************
%
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IF AWALL_TYPE.EQ.1)THEN

WALL_TYPE_NAME="Wall Material Database’

IF (WALL_MATERIAL.EQ.1)THEN :
WALL_MAT_NAME='Aluminum Alloys® - -
OPEN(UNIT=35,STATUS="OLD’ ACCESS—‘SEQUENTIAL

+  FILE=’ALWALLINP)
OPEN(UNIT=39,STATUS="OLD’, ACCESS="SEQUENTIAL’,
+ FILE="alwall.tbl’)

else IF (IWALL_MATERIAL.EQ.2)THEN
WALL_MAT_NAME-="Advanced Launch System’
OPEN(UNIT=35,STATUS="OLD’, ACCESS="SEQUENTIAL’,

+ FILE="ALSWALL.INP’)
OPEN(UNIT=39,STATUS="OLD’ ,ACCESS—’SEQUENTIAL
+ FILE=’ALSWALL.TBL’)

else

write(*,*)’'Input Error from PSDOC interface -

write(*,*)’Program Tenminated with internal error,’

write(*,*)’Bad Iwall_material switch. i

goto 11

end if

C Read Number of walls in selected table
Read(35,31)nwall
QQiniKl—,l 7
READ(39,%)...
5015 CONTINUE
DO 637 KI=1 NWALL
READ(39,6002,END=638)WALL_NAME(KI)
637 CONTINUE
638 CLOSE (UNIT = 39)
6002 format(all)

C
C SINGLE WALL MATERIAL )
else IF (WALL_TYPE.EQ.2)THEN
WALL_TYPE_NAME="Single Wall Material’
OPEN(UNI‘T =35,STATUS= ’OLD ACCESS ‘SEQUENTIAL
+ FILE="WALL.INP") - )
NWALL =1
clse
write(*,*)'Input Error from PSDOC interface -
write(*,*)’Program Terminated with internal error.’
write(*,*)’Bad Iwall_type switch. ’
goto 11
END IF
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c if using Table option, open new tablel.out file and write headers
if ((ibumper_type. c% 1).or.(Iwall_type. ed. 1)) then
OPEN(UNIT=37,STATUS="unknown’ ACCESS="SEQUENTIAL’,
+ FILE—’TABLEI ouT”)
C Read headers into tablel.out file
open(unit=33,status="old’ ,access="sequential’,
+ file="tablel.hdr’)
write(37, ’(1x, Al0,1x, 2.2, 1H:,12.2, 1H:, 12.2, 1H,,
+12.2)’ )cnme, ihr, imin, isec, i100th
write(37, *(1x, Al0, lx,122 1H-, 12.2, 1H-,14.2)")
+ cdate, imon, iday, iyr
do 6005 i = 1,4
read(33,6007)linel
write(37,6007)line1
6005 continue
6007 format(a80)
read(33,6007)linel
line2 = line1(1:12) // bumper_mat_name // line1(53:80)
write(37,6007)line2
read(33,6007)linel
line2 = line1(1:12) // wall_mat_name // line1(53:80)
write(37,6007)line2
do 6006 i=1,7
read(33,6007)linel
write(37,6007)linel
6006 continue
close(unit=33)
end if

C**********#****

C READ GEOMETRICAL SHAPE

C***************

IF ISW6.EQ.1) THEN
SHAPE = "Cylinder’

else
write(*,*)’Input Error from PSDOC interface -
write(*,*)’Program Terminated with internal error.’
write(*,*)’Bad Isw6 switch. ’
goto 11

END IF

C**********#****

C READ IMPACT MODEL

C***************

C

SAIC.
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IF (ISW7.EQ.1) THEN

IMPACT_MODEL="Single Impact Model’

else IF (ISW7.EQ.2) THEN T
IMPACT_MODEL="Three Impact Regions’

else
write(*,*)’Input Error from PSDOC interface -
write(*,*)'Program Terminated with internal error.’
write(*,*)’Bad Isw7 switch. ’
goto 11

end if

IF ISW8.EQ.1) THEN
DEBRIS_ENVIRONMENT="Boeing Model’
NCODE =2

else
write(*,*)’Input Error from PSDOC interface -
write(*,*)’Program Terminated with internal error.’
write(*,*)’Bad Isw8 switch. ’
goto 11

END IF
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C SELECT GRAFTOOL OUTPUT FILE FORMAT
C-ememom - ,

C  Write the definitions and the headings in the temporary output
C file ( z9aaaaaj.pgm ) in the c:\psdoc\input directory.

¢ This format is critical to PSDOC front-end...don’t change!

IF IGRAPH_TYPE.EQ.1)THEN

WRITE(27,*)’/ The Output Variables Are Defined As: ’
WRITE(27,%)'/"

WRITE(27,*)’/ Column 1: run=Run-#

"WRITE(27,*)’/ Column 2: T1 = Optimal Bumper Thickness’
WRITE(27,*)’/ Column 3: T2 = Optimal Wall Thickness’
WRITE(27,*%)’/ Column 4: OBMPUA = Optimal Bumper Mass’//

+ ' Per Unit Area’
WRITE(27,*)’/ Column 5: OWMPUA = Optimal Wall Mass’//
+ * Per Unit Area’
WRITE(27,*)’/ Column 6: WT = Minimum System Mass Per’
+ /!’ Unit Area’
WRITE(27,*)’/ Column7: WTCMC = Mnimum CMC Weight’
WRITE(27,*)’/ Column 8 : OBR = Optimal Bumper Ratio’
WRITE(27,*)’/ Column 9: OWR = Optimal Wall Ratio’
WRITE(27 *)’/ Column 10: D = Critical Design PrOJectlle
+ //’ Diameter’
WRITE(27,*)’/ Column 11: RHOP = Projectile Density’
WRITE(/%? ’2’/ Column 12: XGROWTH = Space Debris Growth’
+ ate’
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WRITE(27,*)’/ Column 13: IMONTH]1 = Initial Operation Month’

WRITE(27,*)’/ Column 14: IYEARI = Initial Operation Year’
WRITE(27,*)’/ Column 15: IMONTH2 = Final Operation Month’
WRITE(27,*)’/ Column 16: IYEAR?2 = Final Operation Year’

+
+

+

+

<+

+
716

WRITE(27,*)’/ Column 17: ALT = Spacecraft Orbital’//
* Altitude’

WRITE(27,*)’/ Column 18: XINCL = Spacecraft Orbital’//
’ Inclination’

WRITE(27,*)’/ Column 19: XP0 = Spacecraft Probability’//
* Of No Penetration’

WRITE(27,*)’/ Column 20: AREAK = Spacecraft Exposed’//

> Area’ :

WRITE(27,*)’/ Column 21: S = Spacecraft Bumper / Wall’//

* Separation’

WRITE(27,%)’/°’

WRITE(27,*)/°

WRITE(27,%)’/’

WRITE(27,*%)’/ Valid X - Columns Are: ’

WRITE(27,%)’/ 11,16,17,18,19,20 °’

WRITE(27,%)’/ Valid Y - Columns Are: ’

WRITE(27,*%)’/ 2,3,4,5,6,7,89 °’

WRITE(27,*)’/’

WRITE(27,%)’/’

WRITE(27,*)'/’

WRITE(27,776)’/RUN-#"," T1*,’ T2 *, OBMPUA ’,OWMPUA’,
"WT’,"WTCMC’,’ OBR ’,” OWR ’,’ D ’,” RHOP ’,’XGROWTH’,
'IMONTH1!’,’ IYEAR1’, IMONTH2’,’'IYEAR2’

JALT ) XINCL’, XP0’,” AREAK’,’ S’
FORMAT(21(A12,1X))

C
C WRITE THE DEFINITIONS AND THE HEADINGS IN THE OUTPUT
C FILE (RESULTS.OUT) IN THE LOTUS (123) FORMAT

else IF (IGRAPH_TYPE.EQ.2)THEN
WRITE(27,*)’ " *,” The Output Variables Are’//
’ Defined As: ’,” "’
WRITEQ27,*)' " "’
WRITE(27,*)’ " *,’ T1 = Optimal Bumper Thickness’,” "’
WRITE(27,*)’ " °’,’ T2 = Optimal Wall Thickness’,” "’
WRITE(27,*)’ " °," OBMPUA = Optimal Bumper Mass Per Unit ’
// ,Ama,” L1 ]
WRITE(27,*)’ " ’," OWMPUA = Optimal Wall Mass Per ’//
lUniIArca,', "oy
WRITE(27,*)’ " °," WT = Minimum System Mass Per Unit ’//
’Ax.cai” "oy
WRITE(27,*)’ " ’," WTCMC = Minimum CMC Weight’,” "’
WRITE(27,*)’ " ’,’ OBR = Optimal Bumper RATIO’,” "’
WRITE(27,*)’ " ’,' OWR = Optimal Wall RATIO’,” "’
WRITE(27,*%)’ " °,’ D = Critical Design Projectile ’//

'Diameter’,’ "’ %
®
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WRITE(27,¥)’ " *,’ RHOP = Projectile Density’,” "’ A
WRITE(27,*)’ "’ ’ XGROWTH = Space Debris Growth Rate’,” "’
WRITE(27,*)’ " g ,;, IMONTHI = Inxnafﬁpcrahon_Month’
WRITE(27,*)’ " ’, " IYEARI = Initial Operation Year’
WRITE(Q27,*)’ "’ ’ IMONTH2 = Final tion Month®
WRITE(27,*)’ " °, » IYEAR2 = Final Operation Year’

WRITE(27,*)’ " °, "ALT = Spacecraft Orbital Altitude’,” "’

WRITE(27,*)' "’ » XINCL Spacecraft Orbital ’//

+ 'Inclination’,’ Wy
WRITE(27,*)’ " e XPO Spacecraft Probablhty Of No ’//
+ 'Penetration’,’ LK

WRITE(27,*)’ " °,” AREAK = Spacecraft Exposed Area’,” "’
WRITE(27,¥)’ " °,’ S = Spacecraft Bumper / Wall *//
+ 'Separation’,’ w
WRITE(Q27,%)" """
WRITE(27,¥)’ " "’
WRITE(27, "‘)’ "

WRITE(27, *)‘/ Vahd Y Columns Are: ’
WRITE(27,*)’/ 2,3,4,5,6,7,89 °’
WRITE(27,*)’' " "’ .
WRITE(27,%)’ " "*
WRITE(27,%)' " "’
WRITE(27 777)’"RUN_#"! ’"Tl "y 9"’1‘2“9 ’"OBWUA"’ ’NOWMPUA"l
Wr“' ,"WTCMC"’ ’“OBRN, l"OWR"’ ’"DN’ ’"RHOPII, "'XGROW'IH
HOMONTI_IIH_’ ‘“ml“’ 9"IMONTH2"? ,"IYEAR2“’ 9"ALT"’
,"XINCIJ“’,’"XPO"”,"AREAK“’,,“S‘f’
FOII{MAT(21(A12,1X))
else
write(*,*)’Input Error from PSDOC interface -’
write(*,*)’Program Terminated with internal error.” - -
write(*,*)"Bad Igraph switch. ’
goto 11 .
END IF

Ne+ 4+

C CALCULTE THE NUMBER OF MATERIALS " NMATS "
NMATS = NBUMP *NWALL

C # MAINLOOPBEGINS #
C HHEHBHHHHEREHHHHHHBHHHEHHHHHHHHHHHHHEHE B
C IN HERE WE ARE INITIALIZING THE COUNTER VARIABLE "T"

I=1
iiii=0
write(*,*)

ny ®
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20 CONTINUE
iiii =1iii + 1
write(*,21)iiii
format(’+Status - Running Case: ’,14)

Reset files 20,23,26 (newdebri.inp, olddebri.inp,
ne_met.inp, craft.inp, and geometry.inp)
when running in table mode. If parametric, always rewind 30, 35
(bumper.inp, and wall.inp) for proper execution.
if (ibumper_type.eq.1) then
rewind(20)
rewind(23)
rewind(26)
else if (ibumper_type.eq.2) then
rewind(30)
end if
if (iwall_type.eq.2) then
rewind(35)
end if

SEEDVAL =73
call Seed (SeedVal)
t1 =0
2 =0
obmpua =0
owmpua =0
wt =0
wteme =0
obr =0

IF (NCODE.EQ.1) then
NYSMITH
C  PROJECTILE DIAMETER IN CM **** READ(10,*)
READ(22,%,end=11)D
C BUMPER/Wall SEPARATION **** READ(10,%H
READ(23,*,end=11)$
C  *++* READ(10,)RHO1’
READ (24,*end=11)RHOI
C  *++* READ(i0,*)RHO2’
READ (25,* end=11)RHO2
C  *%% READ(10,*)CMCLEN
READ (26,* end=11)CMCLEN
C  *+++ READ(10,*)CMCRAD
READ (26,*,end=11)CMCRAD

c WRITE(11,*)’ NYSMITH’
WRITE(11,*)
WRITE(11,*)’ INPUT
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WRITE(11,*y’ Projectile Diameter InCM =’,D _
WRITE(11,*)’  Bumper/Wall Separation In CM = ,H
WRITE(11,*)’ Bumper/Wall Separation In CM =
WRITE(11,*)
TIT=0
T2T=0

DO 26 J—l 16 = %%."4_{—??’::7 v EE i;, .
V= FLOAT(J) R
C CALL NYSMITH(V,D,H RHOI RHOZ T1 T2 WT. WTCMC)
CALL NYSMITH(V, D, H, RHO1, RHO2, T1, T2)
TIT=TIT+T1 *XPV(QJ)
T2T =T2T + T2 * XPV(J)
26 CONTINUE

T1=TIT
T2=T2T
WT =RHOI! *T1 + RHO2 * T2
R12 =CMCRAD
R22=R12+T2
R11=R22 +H
R21=R11+T1 -
WTCMC =3.1416 * (CMCLEN / 1000 0)
WTCMC=WTCMC*(RHO1*(R21**2.-R11**2)+RHO2*(R22**2.-R12**2. ))
c WRITE(11,*)’ OUTPUT’ ,
WRITE(11,*)
WRITE(11,*)’ Bumper Thickness = °,T1,’"CM’
WRITE(11,*)’  Wall Thickness =’ T2,'CM’
WRITE(11,%)’  Minimum Weight =’ WT,’GM/Square CM’
WRITE(11,*)’ CMC Minimum Weight =’ WTCMC,’KG’
WRITE(11,*)
WRITE(11,*)
WRITE(11,%)
[0 N
else [F (NCODE.EQ.2) then - ==
BOEING
C NENVIRON =1 ==>EARTH ORBITAL SPACE DEBRIS (NEW)
IF(NENVIRON EQ. 1) THEN
READ(20,*,end=11)XGROWTH
READ(20,*,end=11)x
IMONTHI1 =x
READ(20,*,end=11)x
IYEAR] =x
READ(20,*,end=11)x
IMONTH2 =x
READ(20,*,end=11)x
IYEAR2 =x
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READ(20,*,end=11)ALT
READ(20,*,end=11)XINCL
READ(20,*,end=11)XP0
READ(23,*,end=11)AREAK

INCL = IFIX(XINCL + .5)
XPSI = XPSIV(INCL)

CALL DEBRIS(XGROWTH,SOLAR,XPSI,IMONTH1,IYEARI,IMONTH2,
+ IYEAR2,ALTXINCL,XP0O,AREAK,D,XPV,IVMAX)

RHOP=2.8
IF(D .GT. 1.0) THEN
RHOP = 2.8/(D**0.74)
END IF
else if (NENVIRON .EQ. 2) THEN
C NENVIRON =2 ==> EARTH ORBITAL SPACE DEBRIS(OLD)

READ(20,*,end=11)T
READ(20,*,end=11)XP0
READ(23,*,end=11)AREAK

CALL DEBRISOLD(T, XP0, AREAK, D)

RHOP =28

DO 555 K1JK=1,16
XPV(KUK) = XDEBOLDIV(KIJK)
555 CONTINUE
else if (nenviron.eq.3) then
C NENVIRON =3 ==> Near Earth Meteoroid
READ(23,*,end=11)AREAK
READ(20,*,end=11)T
READ(20,*,end=11)ALT
READ(20,*,end=11)XP0

DENS =.5 .
CALL METEOROID(AREAK, T, XP0, ALT, DENS, D, L)

RHOP = DENS
IVMAX =172

DO 544 K1JK=1,72
XPV(KUK) = XMETIV(KIJK)
544 CONTINUE

end if
READ(23,*,end=11)S
READ(26,*,end=11)CMCLEN
READ(26,*,end=11)CMCRAD
READ(30,*,end=11)RHO1

165

An Employee-Owned Company



READ(30,*,end=11)SY1

c SY1=C_SYI(K)
READ(30,*,cnd—1 1)E1

c El =C_E1(K)
READ(35,*,end=11)RHO2

c RHO2 = C_RHO2(K)
READ(35,* end=11)XL2

c X1L.2 = C_XL2(K)
READ(35,*,end=11)SY2

c SY2=C_SY2(K)

XN = .85

SY1=SY1 * 144000.0
SY2 =SY2 * 144000.0
El1=E]1 * 6.880285E+10

TIT=00
T2T =0.0

DO 36 J=1,IJVMAX

V = FLOAT(J)

IF(XINCL .GT. 40. O)THEN
THETA = ACOS(-1.0 * V/IVMAX) - 1.57
IF(THETA .GT. 1.57)THEN

THETA = 1.57
ENDIF
ELSE
THETA = ACOS(-1.0 *V/154) - 1.57
ENDIF

166

C 3676 CALL BOEING(V,D,RHOP,RHO1,RHO2,5,XL2,SY1,SY2,THETA,

C + XN.E1,CMCRAD,T1,T2,WT,WTCMC)

3676 CALL BOEING(V,D,RHOP,RHO1,RHO2,S,XL2.SY1,SY2, THETA,

+ XN,E1,CMCRAD,T1,T2,WT)

TIT=TIT+ XPV(QJ) *T1
T2T =T2T + XPV(Q) * T2
36 CONTINUE
, T1=TIT
T2=T2T
WT =RHO1 *T1 + RHO2 * T2
R12=CMCRAD
R22=CMCRAD +T2
R11 =CMCRAD +T2+8S
R21=CMCRAD +T1+T2+S

VB=3.1416*(CMCLEN/1000.)*(R21**2.-R11**2.)
VW=3.1416*(CMCLEN/1000.)*(R22**2.-R12**2.)

WTCMC = RHO1 * VB + RHO2 * VW
991 CONTINUE

SAIC
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else IF (NCODE.EQ.3) then
C MADDEN

*dkdik MADDEN MINIMIZES SUM OF THICKNESSES ONLY **¥¥¥xx

oo aocaoo0oaa

aaoaaaca

C 45 READ(0,*)D

C PROJECTILE DIAMETER IN CM **#** READ(10,*)D
READ(22,*,end=11)D
c READ(10,*)RHOP
C *hkkkk (10 %)S
READ(23,*,end=11)S
c READ(10,*)RHO
c WRITE(11,*)’ MADDEN’
WRITE(11,*)
WRITE(11,*)" INPUT’
WRITE(11,*)
WRITE(11,*)’ Projectile Diameter InCM ='.D
WRITE(11,*)’  Projectile Density In IN GM/Cubic CM =’,RHOP
WRITE(11,*)’ Bumper/Wall Density In GM/Cubic CM =’ ,RHO
WRITE(11,*)’ Bumper/Wall Separation InCM =",S
WRITE(11,*)
TiT=0.0
T2T=0.0

DO 46 J=1,16
V = FLOAT(J)

C CALL MADDEN(V,D,RHOP,S,RHO,T1,T2, WT,WTCMC)
CALL MADDEN(V, D, RHOP, S, RHO, T1, T2)
TIT=TIT + T1 * XPV(J)

T2T =T2T + T2 * XPV(J)

46 CONTINUE

T1=TIT
T2 =T2T
WT=T1+T2
R12=211.0
R22=2110 +T2
R11=2110 +T2+S
R21=2110 +T1 +T2+S
VB=4.27*(R21**2 -R11**2))
VW=4.27%(R22%*2,-R12**2))
WTCMC =RHO * (VB + VW)
c WRITE(11,*)’ ouTPUT’
WRITE(11,%)
WRITE(11,*)’ Bumper Thickness = *,T1,CM’
WRITE(11,*)’ Wall Thickness = ’,T2,’CM’
WRITE(11,*)’ Minimum Weight =’ WT,"CM’

WRITE(11,*)’ CMC Minimum Weight = ’,WTCM%

167
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¢  WRITE(1L,*)
c WRITE(11,%)
c WRITE(11,¥)

else IF (NCODE.EQ.4) then

C WILKINSON

C  #x READ(10,“)D
READ(22,*,end=11)D

C  #+x* READ(10,*)RHOP
READ(22,*,end=11)RHOP

C  #***x(10,)RHOI1
READ(24,*,end=11)RHO1

C  #++(]10,%)RHO2
READ(25,*,end=11)RHO2

C #uik (10,%)S

READ(23,*end=11)S

C w3 (10,9)XL2 cr o e
READ(5,*,end=1)XL2 ~— = "~

C  #+++(10,CMCLEN
READ(26,*,end=11)CMCLEN

C  #+*+(10,*)CMCRAD
READ(26,*,end=11)CMCRAD

c WRITE(11,*)’  WILKINSON’

c WRITE(11,*)
c WRITE(11,*)’ INPUT’
¢ WRITE(11,*)
c WRITE(11,*)’ Projectile Dlameter In CM = ,D B
c WRITE(11,*)’  Projectile Density In GM/Cubic CM * RHOP
¢  WRITE(11,*)’  Bumper Density In GM/Cubic CM RHOI o
¢  WRITE(11,%)’  Wall Density In GM/Cubic CM = RHOZ
c WRITE(11,*)’  Bumper/Wall Separation InCM =",§
c WRITE(11,*)’ Wall Material Constant =, X1.2
c WRITE(11,*)
T1T=0.0
T2T=0.0
DO 56 J=1,16
V =FLOAT(Q)
C CALL WILKINSON(V,D,RHOP,RHO1,RHO2,S,XL2,
C & T1,T2,WT,WTCMC)
CALL WILKINSON(V,D,RHOP,RHO1,RHO2,5,XL2, -
& T1,T2)
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TIT=TIT +T1 * XPV(J)
T2T =T2T + T2 * XPV(J)
56 CONTINUE

T1=TIT
T2=T2T )
WT =RHO1 *T1 + RHO2 * T2
R12 = CMCRAD
R22 = CMCRAD + T2
R11=CMCRAD +T2+S§
R21 =CMCRAD+T1+T2+S
VB=3.1416*(CMCLEN/1000.)*(R21**2.-R11**2,)
VW=3.1416*(CMCLEN/1000.)*(R22**2.-R12**2,)
WTCMC = RHO1 * VB + RHO2 * VW
c WRITE(11,*)’ OUTPUT’
WRITE(11,%)
WRITE(11,*)’ Bumper Thickness =’,T1,’CM’
WRITE(11,*)’  Wall Thickness = ', T2,CM’
WRITE(11,*¥)’ Minimum Weight =’,WT,’"GM/Square CM’
WRITE(11,*)’ CMC Minimum Weight =\ WTCMC,'’KG’
WRITE(11,*)
WRITE(11,*)
WRITE(11,%)

else IF (NCODE.EQ.5) then
MODIFIED BURCH

C ¥k READ(10,)D
READ(22,*,end=11)D

C **** (10, RHO1
READ(24,*,end=11)RHO1

C **#* (10,*)RHO2
READ(25,*,end=11)RHO2

C *hkk (10,%)S
READ(23,*,end=11)S

C ki READ(10,*)THETA
READ(22,*,end=11)THETA

C **xx READ(10,*)XN
READ(24,*,end=11)XN

C **xk (10,%)E1
READ(24,*.end=11)El

C *&%% (10,*YCMCLEN
READ(26,*,end=11)CMCLEN

C *dx* (10,5YCMCRAD
READ(26,*,end=11)CMCRAD

*kkkk NMODIFIED BURCH *¥%%%
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c WRITE(11,*)’ MODIFIED BURCH’

WRITE(11,*)

WRITE(11,*)’ INPUT’

WRITE(11,*)

WRITE(11,*)’ Projectile Diameter InCM =’.D
WRITE(11,*)’ Bumper Density In GM/Cubic CM =’ ,RHO!
WRITE(11,*)’ Bumper/Wall Separation InCM =",§

WRITE(I L*y Number O
+ ' Bumper=", XN
WRITE(11, "‘)’ Bumper Youngs Modulus In MSI =, E1
WRITE(11,*) S o
El =E1 * 6.880285E+10
T1T=0.0
T2T =0.0

DO 66 J=1,16
V= FLOAT(J)
C CALL BURCH(V,D,RHOI RHOZ S THETA
C & XN.E1,T1, T2, WT,WTCMC)

CALL BURCH(V,D,RHO1,RHO2,S,THETA,
& XN,E1,T1,T2,TIB,F1)

TiIT=TIT + T1 * XPV(J)
T2T =T2T + T2 * XPV(J)

66 CONTINUE

T1=TIT
T2=T2T
WT =RHO1 * T1 + RHO2 * T2
R12=CMCRAD
R22 =CMCRAD + T2
R11=CMCRAD + T2 + S o
R21=CMCRAD +T1+T2+S
VB=3.1416*(CMCLEN/1000.)*(R21**2. -Rll**2 )
- VW=3.1416*(CMCLEN/1000.)*(R22**2.-R12**2.)
WTCMC = RHO1 * VB + RHO2 * VW
c WRITE(11,*)’ OUTPUT’
WRITE(11,%)
WRITE(11,*)’  Bumper Thickness =’,T1,’CM’
WRITE(11,*)’  Wall Thickness =’ T2 CM
WRITE(11,*)’ Minimum Weight = 'GM/Square CM’
WRITE(11,*)’ CMC Minimum Welght =’ WTCMC,’KG’
WRITE(11,*) .
WRITE(11,%)
WRITE(11,%)

OO0 Oo0a000a0

OO0 a0aO0a00a0
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C

end if
HERE WE DEFINE AND CALCULATE NEW VARIABLES

NEEDED FOR OUTPUT

C

O 0O 0 a0 a0

OPTIMAL BUMPER MASS PER UNIT AREA
OBMPUA =T1 * RHOI

OPTIMAL WALL MASS PER UNIT AREA
OWMPUA = T2 * RHO2

OPTIMAL BUMPER RATIO
OBR =T1 * RHO1 /WT

OPTIMAL WALL RATIO
OWR =T2 * RHO2/WT

SPACECRAFT INITIAL OPERATING CAPABILITY
SIOC =IYEARI

SPACECRAFT MISSION DURATION
SMD =1YEAR2 - IYEAR] +1

[ o —

C HERE WE WRITE THE CALCULATED OUTPUT VALUES
C TO THE MAIN OUPUT FILE CALLED "RESULTS.OUT’

C

+
782

+

++ +

+

if ((ibumper_type.eq.1).or.(iwall_type.eq.1)) then

C

else

Write Calculated Output Values To ’ TABLE1.OUT ’
WRITE(37,782) BUMPER_NAME(iiii), WALL_NAME(iii),T1,
T2,0BMPUA,OWMPUA ,WT,WTCMC

FORMAT((A14,1X),(A11,1X),(5F7.4,1X),F9.2)

IF IGRAPH_TYPE.EQ.1)THEN

778 WRITE(27,779)1,T1,T2,0BMPUA,OWMPUA , WT,WTCMC,0BR,0WR,D,RHOP,
XGROWTH,IMONTH1,IYEAR1,IMONTH2,IYEAR2,ALT XINCL ,XP0,AREAK,S

WRITE(29,779)1,T1,T2,0BMPUA,OWMPUA ,WT,WTCMC,0BR,0WR,D,RHOP,

XGROWTH,IMONTH1,IYEAR],IMONTH2,IYEAR2,ALT XINCL,XPO,AREAK,S

779

FORMAT(19,1X,11(F12.4,1X),4(19,1X),5(F12.4,1X))
else if (igraph_type.eq.2) then

780  WRITE(27,781)1,’,",T1,",",T2,"," , OBMPUA,’," , OWMPUA,’,’,
WT’,’,’WTCMC’,”,OBR’””OWR””)D,,,‘9RHO [,9,7
XGROWTH,’,’ IMONTH]1,”," IYEAR1,’,’, IMONTH2,’,’ IYEAR2,’,’,
ALT,," XINCL,’,’ XP0,’,", AREAK,’,’,S

WRITE(29,779)1,T1,T2,0BMPUA,OWMPUA, WT,WTCMC,0OBR,OWR,D,RHOP,

XGROWTH,IMONTH1,IYEAR],IMONTH2,IYEAR2, ALT XINCL,XPO,AREAK,S

781

FORMAT(19,1X,11(F12.4,1X),4(19,1X),5(F12.4,1X))
end if

end if

I=I+1
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11 CONTINUE

C HERE WE WRIT]
C "XPV(V)", AND "THE]

172

E THE CALCULATED VALUES OF "V",
[A" TO THE OUTPUT FILE CALLED

C "PROJECT.OUT" prior to leaving
WRITE(28,3675)V,XPV(V), THETA

3675 FORMAT(3(F9.5,1X))

write (*,*) ’ Program Finished’

CLOSE (UNIT =
CLOSE (UNIT =

CLOSE (UNIT =
CLOSE (UNIT =
CLOSE (UNIT =
CLOSE (UNIT =
CLOSE (UNIT =
CLOSE (UNIT =
CLOSE (UNIT =

STOP
END

o S

20)
23)
26)
27)
28)
29)
30)
35)
37

C*********************

slolple

SUBROUTINES BEGIN HERE

SUBROUTINE DEBRIS(XGROWTH SOLAR,XPSI IMONTHI IYEARI1 IMONTH2,

& IYEAR2,ALT,XINCL,XPO, AREAK,D XPV IVMAX)

C DIMENSION SOLAR( 100) XPV( 100),XPS IV(105) <--- MODIFIED
DIMENSION SOLAR(1188), XPV(100)

GITOT =0.0

G2TOT =0.0

NYEARS =IYEAR2 - IYEARI +1 .
NMONTHS = 12*(IYEAR2- IYEAR1)+1month2-1monthl

DO 582 IL=1,NMONTHS

XPHI1=10.%*((ALT/200.)- ~ 5=

& (SOLAR(12%(IYEAR 1-1987- 1)+imonth 1 +1L-1/140.-1.5)
XPHI = XPHI1 / (XPHI1 + 1.0)
G1=(1.+2.*XGROWTH)**(IYEAR1-1985+(imonth1+il-2)/12.0)
G2=(1.+XGROWTH)**(TYEAR1-1985+(imonth1+il-2)/12.0)
GITOT = G1TOT + XPHI * G1
G2TOT = G2TOT + XPHI *G2_

582 CONTINUE
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FLUX = 12.0 * ALOG(XP0) / (AREAK * XPSI)
DEN =-1.0 * (5.9499E-07 * G2TOT + FLUX)
XNUM =.0000105 * GI1TOT
D=(XNUM/DEN)**0.4
YG = 250.0
YF=0.0
YC=.0125
YE =.55 +.005 * (XINCL - 30.0)
YH=1.0-0.0000757*(XINCL-60.0)**2.0
YA=25 :
YB=.3
YD=1.3-.01*(XINCL-300)
YV0=177
IF(XINCL .LE. 60.0)THEN
YB=.5
YG=18.7
YV0=7.25+.015* (XINCL - 30.0)
ENDIF
IF(XINCL .LE. 80.0 .AND. XINCL .GT. 60.0)THEN
YB=.5-.01*(XINCL-60.0)
YG=18.7+0.0289*(XINCL-60.0)**3.0
ENDIF
IF(XINCL .GT. 100.0)THEN
YC=.0125 +.00125 * (XINCL - 100.0)
ENDIF
IF(XINCL .LE. 50.0)THEN
YF=0.3+0.0008*(XINCL-50.0)**2.0
ENDIF
IF(XINCL .GT. 50.0 ,AND. XINCL. .LE. 80.0)THEN
YF=.3-.01* (XINCL-50.0)
ENDIF
XSUMIV =0.0
IVMAX =1
IVv=1
584 XPV(IV)=YG*2.7183**(-1.0*((IV-YA*YV0)/(YB*YV())**2.0)
XPV(AV)=XPV(IV)+YF*2.7183**(-1.0%((IV-YD*YVO0)/(YE*YV())**2.0)
XPV(IV)=XPVAV)*(2.0*IV*YV(-IV**¥2.0)
XPV(IV)=XPV(IV)+YH*YC*(4.0*IV*YV(Q-IV**2.0)
IF(XPV(IV) .LE. 0.000)THEN
XPV(IV)=0.0
IVMAX =1V
GOTO 586
ENDIF
XSUMIV = XSUMIV + XPV(1V)
Iv=IVv+1
GOTO 584
586 DO 5881=1,IVMAX
XPV(D) = XPV() / XSUMIV
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RETURN

END

[o

SUBROUTINE DEBRISOLD(T ,XPO AREAK, D)

FLUX =-1.0 * ALOG(XPO) / (AREAK *T)

= ALOG10(FLUX)

C"'"’*** MS-FORTRAN DOES NOT ALLOW CONSECUTIVE MATHEMATICAL

OPERATORS TO BE PLACED ADJACENT TO ONE ANO’I'HER ie.

YOU CAN *** NOT *** HAVE: " /-"

IF(F.GE.-5.46)THEN
D=10.**((F+5.46)/-2.52)

END IF

IF(F.GE.-5.9.AND.F.LT.-5.46)THEN
D=10.**((F+5.02)/-0.44)

ENDIF

IF(F.LT.-5.9.AND.F.GE.-6.4)THEN
D=10.**((F+5.78)/-0.063) ..

ENDIF

IF(F.GE.-7.0.AND.F.LT.-6.4)THEN
D=10.**((F+6.33)/-0.0067)

END IF

IF(F.GE.-7.3.AND.F.LT.-7.0)THEN
D=10.**((F+6.88)/-0.0012)

END IF

IF(F.GE.-7.6.AND.F.LT.-7.3)THEN
D=10.**((F+6.6)/-0.002)

ENDIF = ,

IF(F.GE.-8.0.AND.F.LT. 7 6)THEN
D=10.**((F+5.6)/-0.004)

END IF

IF (F.GE. - 5.46) THEN
D=104%(F+5.46/(252)
ENDIF

IF(F.GE.-5. §AND FLT.-546)THEN

D=10. ""“((F+5 02)/(-0 44))
END IF
IF(F.LT.-5.9.AND.F.GE.-6.4)THEN
D=10.%*((F+5.78)/(-0.063))
ENDIF
IF(F.GE.-7.0.AND.F.LT.-6.4)THEN
D=10.**((F+6.33)/(-0.0067))
ENDIF
IF(F.GE.-7.3.AND.F.LT.-7.0)THEN
D=10.**((F+6.88)/(-0.0012))
END IF

174

An Employee-Owned Company

al mi Qi AW . oW e w0 A W T 8 i m |



IF(F.GE.-7.6.AND.F.LT.-7.3)THEN
D=10.**((F+6.6)/(-0.002))
END IF
IF(F.GE.-8.0.AND.F.LT.-7.6)THEN
D=10.**((F+5.6)/(-0.004))
END IF

RETURN

C SUBROUTINE METEOROID(SA,T,PO,ALT,DENS,D)
SUBROUTINE METEOROID(AREAK, T, XP0, ALT, DENS, D, L)

T =31536000.0 * T
FLUX =-1.0 * ALOG(XP0) / (AREAK * T)
RA =6371.0 /(6371.0 + ALT)
GE = .568 + 432 *RA
THETA = ATAN(6371.0 / SQRT(ALT * (ALT + 2.0 * 6371.0)))
S =(1.0 + COS(THETA))/2.0
FLUX =FLUX/(GE * §)
F = ALOG10(FLUX)
IF (F.GE. - 4.403) THEN
WRITE(11,*)’ MASS IS TOO SMALL’
GOTO 1001
ENDIF
< IF(F.GT.-7.103.AND.F.LT.-4.403)THEN
RAD =2.509 - .25 * (14.339 + L)
XM=10.%%((-1.584+SQRT(RAD))/.125)
ENDIF
IF(F.LE.-7.103.AND.F.GE.-14.37)THEN
XM=10.**((14.37+F)/-1.213) <--- NOT ALLOWED IN MS-FORTRAN
XM=10.**( (14.37+F)/(-1.213) )
END IF
IF (F.LT. - 14.37) THEN
WRITE(11,*)’ MASS IS TOO LARGE’
GOTO 1001
END IF
D=(1.91*XM/DENS)**.333
CONTINUE
RETURN

C SUBROUTINE NYSMITH(V,D,H,RHO1,RHO2,T1,T2,WT,WTCMC)
SUBROUTINE NYSMITH(V, D, H, RHO1, RHO2, T1, T2)
C DMAX=0.24*H*V**.0.2 <--- NOT ALLOWED IN MS-FORTRAN

DMAX=0.24*H*V**(-0.2)
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IF (D.GT.DMAX) THEN
1WRI'I'I-Z(II *) “NO SOLUTION--PROJ DIA. TOO LARGE FOR NYSMITH
else
T1=(1.93*%V**(, 18*D*"'1 91/H**0 91)*((RHO2/RHOI)"‘*0 65)
T2=1.86 * T1 * RHO1/RHO2
END IF
RETURN
END

[o

kkdkh PEN4 *dkkx
C SUBROUTINE BOEING(V,D,RHOP,RHO1,RHO2,5,X1.2,SY1,SY2,THETA,
& XN,E1,CMCRAD,T1,T2, WT,WTCMC)

SUBROUTINE BOEING(V,D,RHOP,RHO1,RHO2,5,XL.2,SY1,SY2,THETA,
XN.E1,CMCRAD,T1,T2,WT)
T1i=.16
V=V *3280.0
D -D/30.48
=D/2.0
RHOP RHOP * 1.94
RHO1 =RHO1 * 1,94
RHO2 =RHO2 * 1.94
NITSP=0
NITSP=NITSP+ 1
NP1=0 )
TIiP=T1/30.48
T2P = FT2P(RHOP,V, RP, SY1,THETA, RHO1,SY2, D RHOZ TlP)
WT=RHO1*TIP + RH02 * T2P
IF (NITSP.EQ.1) THEN
TiP1=1.1*TIP
T2P1 = FT2P(RHOP,V,RP,SY1,THETA ,RHO1,5Y2,D, RHOZ ,TIP1)
WT1 =RHO1 * T1P1 + RHO2 *TZPI
ENDITF
IF (WT1.GT.WT) THEN
TiP1=.82 * TIP1 .
T2P1 = PT2P(RHOP V.RP,SY1, THETA RHOI SY2,D RHO2 TIPI)
WT1 =RHOI1 * T1P1 + RHO2 * T2P1
590 IF (WT1.GT.WT) THEN
GOTO 601
ELSE
TIP=TIP1
T2P=T2P1
WT=WT1 -
NP1 =NP1 +1
IF (NP1.EQ.100) THEN

cHe* WRITE(11,*¥)’ NO CONVERGENCE IN PEN4’

GOTO 557
ENDIF _=

& ®

An Employee-Owned Company

i s W o= W T 1] ni Al [ ([N |

i

i o4« Wi € |



c¥kk

(s

T1P1 =.9 * T1P1
T2P1 = FT2P(RHOP,V,RP,SY1,THETA,RHO1,SY2,D,RHO2,T1P1)
WT1 =RHO1 * T1P1 + RHO2 * T2P1
GOTO 590
END IF
ELSE
579 TI1P=TIPI
T2P = T2P1
WT =WT1
TiP1=1.1 *TI1P1
T2P1 = FT2P(RHOP,V,RP,SY1,THETA, RHO1,SY2,D,RHO2,T1P1)
WT1 =RHO1 * TiP1 + RHO2 * T2P1
IF (WT1.GT.WT) THEN
GOTO 601
ELSE
NP1=NPl1+1
IF (NP1.EQ.100) THEN :
WRITE(11,*)’ NO CONVERGENCE IN PEN4’
GOTO 557
ENDIF
GOTO 579
END IF
END IF
601 CONTINUE
D=30.48*D
RHOP = RHOP/1.94
RHO1 =RHO1/1.94
RHO2 =RHO2/1.94
T1P =30.48 * T1P
T2P = 3048 * T2P
IF(T1P/D.LE.0.4)VF=4100
IF(T1P/D.GT.0.4)VF=4986*(T1P/D)**0.21
VF = VF + 4000.0
IF (V.LE.VF) THEN
WRITE(11,*)’ INSIDE OF PEN4 LIMITS’ -
T1=TIP
T2 =T2P
GOTO 1102
END IF
557 CONTINUE

wkdkdk WILKINSON *¥kk*

YV =V/3280.0
T1=0.604*D**2 *RHOP/(S*RHO1)
T1=T1 * SQRT(V * COS(THETA) / XL2)
T2 =T1 * RHO1/RHO2
RATIO =D * RHOP/ (T1 * RHO1)
IF (RATIO.GT.1.0) GOTO 1458

IF(RATIO.LE.1.0)T2=T2/RATIO %
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1458 CONTINUE
chx* WRITE(11,*)'TIW ="T],)T2W="T2 - . - -
#*xkx MODIFIED BURCH **¥¥¥ ]
THI=0.816*(0.5236*RHOP*D**3.0)**0. 352*(RHOP**0 167)
THI=THI*(V**0.875)/(0.8467*RHO1**0.5)
THI =THI/2.54
TLO = 0.0
TINTERVAL =THI - TLO
C

ISEED=91411 <--- THIS IS NO LONGER NEEDED, SlNCE
WE WILL USE OUR OWN SEED VALUE -
WHICH WILL COMPLY WITH MS-FORTRAN

VB =V *3280.0
DB=D/254
CM = SQRT(E1 / RHOI)
CM = CM /30.48
SB=S/254
RHOP = RHOP * 036215
RHO1 =RHO1 * .036215
RHO2 = RHO2 * .036215
IF (THETA.LE.0.001) GOTO 125
CHI = TAN(THETA) - .5
XPENALTY = 1.0
T1B = THI
F1=2.42%(DB/T1B)**(.333+4.26*(T1B/DB)**0.333-4.18
F2=.5-187*(TIB/DB) + (5.0 * TIB/DB - 1.6)
+ * CHI * CHI * CHI
F2=F2+(17- 120 * TIB /DB) * CHI
F3=0.32%(T1B/DB)**0.83
F3=F3+0.48*(TIB/DB)**0.33*SIN(THETA)**30
c*** ~ WRITE(11,#’'DB ="DB,XN =" XN,’Fl =" F1,’F2 =" F2
c***  WRITE(11,*)'THI = *, THI, CHI = *,CHI
IF (F1 + .63 * F2.LT.0.001) THEN
T2F=2116.8 * CMCRAD/SY2 |
GOTO 483
END IF
~ T2F=DB*((F1+0.63*F2)/XN)**1.7143
T2F=T2F*(CM/VB)*+2.2857
T2F=T2F*(DB/SB)**0.7143
483 _ XNN=F3*(DB/T2Fy*(CM/VB)**1.333 .
YDELTA=00 -
TF(XNN.GT.0.850)YDELTA=1.000
TOTPEN=YDELTA*XPENALTY*(XNN-0.85)**2.00
WTB = RHOI * T1B + RHO2 * T2F + TOTPEN o

WTMIN = WTB

slolele]
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T1BEST = THI
T2BEST = T2F
TOTPENBEST = TOTPEN
482 DO 481 IPENALTY=1,460
C
C T1B=TINTERVAL*RAN(ISEED) <--- RAN IS NOT USED IN
CMS - FORTRAN

CALL RANDOM(RANVAL)
T1B = TINTERVAL * RANVAL
F1=2.42*(DB/T1B)**0.333+4.26*(T1B/DB)**0.333-4.18
F2=.5-187*(TIB/DB)+ (5.0 *T1B/DB - 1.6)
+ * CHI * CHI * CHI
F2=F2+(1.7-12.0 *T1B/DB) * CHI
F3=0.32*(T1B/DB)**0.83
F3=F3+0.48*(T1B/DB)**0.33*(SIN(THETA))**3.0
IF (F1 + .63 * F2.LT.0.001) THEN
T2F =2116.8 * CMCRAD/SY2
GOTO 484
END IF
T2F=DB*((F1+0.63*F2)/XN)**1.7143
T2F=T2F*(CM/VB)**2.2857
T2F=T2F*(DB/SB)**0.7143
484 XNN=F3*(DB/T2F)*(CM/VB)**1.333
YDELTA =0.0
IF(XNN.GT.0.850)YDELTA=1.000
TOTPEN=YDELTA*XPENALTY*(XNN-0.85)**2.00
WTB = RHOL1 * T1B + RHO2 * T2F + TOTPEN
IF (WTB.LT.WTMIN) THEN
WTMIN = WTB
TIBEST=TI1B
T2BEST = T2F
TOTPENBEST = TOTPEN
ENDIF
481 CONTINUE
IF (TOTPENBEST.GT.0.001) THEN
XPENALTY = XPENALTY *10.0
IF XPENALTY.GT.1.0E12) THEN
GOTO 485
END IF
GOTO 482
ENDIF
485 TI1B =TIBEST
T2B = T2BEST
cH¥* WRITE(11,*)'T1B =, T1B,’T2B =, T2B,’K =, XPENALTY
cHREx WRITE(11,*)’TOTPENBEST = ', TOTPENBEST
GOTO 499
125 CONTINUE
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c***++%  WRITE(11,*)’RHOI = ’,RHOI1
ck**++*  WRITE(11,*)RHO2 = *,RHO2

XK1=(DB/XN)**1.71%(CM/VB)**2.29/SB**(.71
VDELTA = 0.0
DELTAS3 =.52
1099 DELTA2=233*(1.0 - 1.57 * DELTA3)
DELTA1 =133 *(2.0 * DELTA3- 1.0)
VDELTA1=(1/DELTA1)**DELTA1*(2.8*XK1/(DELTA2*DB**0.57))
+ **DELTA2
VDELTA 1=VDELTA1*(1.58*XK1*DB**0.57/DELTA3)**DELTA3
VDELTA1=VDELTA1*(RHO1**DELTA 1)*(RHO2**(DELTA2+DELTA3))
IF (VDELTA1.LT.VDELTA) THEN
DELTA1 =1.33 * (2.0 * DELTA3- 1.04)
T1B = DELTA1 * VDELTA /RHO1 ==« -+
T2B = (VDELTA - T1B * RHO1) / RHO2
GOTO 499
END IF
VDELTA = VDELTAL1
DELTA3 = DELTA3 + .02
IF (DELTA3.GT.0.63) THEN
T1B = DELTA1 * VDELTA / RHO!
T2B = (VDELTA - T1B * RHO1) / RHO2
GOTO 499
END IF
GOTO 1099
499 CONTINUE
w##i* COMPARISON OF MODIFIED BURCH AND WILKINSON *##x
199 CONTINUE
TI0W =T1 /2.54
IF (THETA.LT.0.001) GOTO 486
F10W=2.42*(DB/T10W)**0.333+4.26*(T10W/DB)**0.333-4.18
F20W = .5 - 1.87 * (T10W / DB) + (5.0 * TIOW /DB - 1.6)
+* CHI * CHI * CHI
F20W = F20W + (1.7 - 12.0 * T10W /DB) * CHI
F30W=0.32*(T10W/DB)**(.83
F30W=F30W-+0.48*(T10W/DB)**0,33*(SIN(THETA))**3.0
IF (F10W +.63 * F20W.LT.0.001) THEN
T2FT10W = 2116.8 * CMCRAD / SY2
GOTO 487
END IF
T2FT10W=DB*((F10W--0.63*F20W)/XN)**1.7143
T2FT10W=T2FT10W*(CM/VB)**2.2857
T2FT10W=T2FT10W*(DB/SB)**0.7143
487 T2BTIOW = T2FTIOW *2.54
XNNT10W=F30W*(DB/T2FT10W)*(CM/VB)**1.333
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IF (XNNT10W.GT.0.85) THEN
T2BT10W =0.0
ENDIF
RATIOB = (DB * RHOP) / (RHO1 * T1B)
T2WT10B=0.364*D**3 *RHOP*V*COS(THETA)/(XL2*RHO2*S5**2.)
I[F(RATIOB.GT.1.0)T2WT10B=T2WT10B*RATIOB
IF(T2BT10W.GT.T2)T2=T2BT10W
T2B =T2B * 2.54
IF(T2WT10B.GT.T2B)T2B=T2WT10B
T1B =TIB * 2.54
RHOP = RHOP /.036215
RHO1 =RHO! /.036215
RHO2 = RHO2 /.036215
IF (RHO1 * T1B + RHO2 * T2B.LT.RHO1 * T1 + RHO2 * T2) THEN
T1=TIB
T2=T2B
END IF
GOTO 155
486 F10W=1.58*(DB/T10W)**0.57+2.80*(T10W/DB)**0.57
T2BT10W=(F10W/XN)**1.71*(CM/VB)**2.29*DB**1.71
T2BT10W=T2BT10W/SB**0.71
T2BT10W = T2BT10W * 2.54
RATIOB = (DB * RHOP) / (RHOI * T1B)
T2WT10B=0.364*D**3.*RHOP*V*COS(THETA)/(XL.2*RHO2*5**2.)
IF(RATIOB.GT.1.0)T2WT10B=T2WT10B*RATIOB
IF(T2BT10W.GT.T2)T2=T2BT10W
T2B =T2B * 2.54
IF(T2WT10B.GT.T2B)T2B=T2WT10B
TIB=TIB *2.54
RHOP = RHOP /.036215
RHO1 =RHO1/.036215
RHO2 =RHO2/.036215 , ,
IF (RHO1 * T1B + RHO2 * T2B.LT.RHO1 * T1 + RHO2 * T2) THEN
T1=TIB
T2=T2B
ENDIF
155 CONTINUE
1102 IF (T2.LE.0.01) THEN
T2=2116.8 * CMCRAD /SY2

cHaddx WRITE(11,*)’T1P =" T1,’T2P =", T2
END IF
cH¥* WRITE(11,*)'T1 =°,T1,’T2 =", T2
156 RETURN
END
| T ——

FUNCTION FT2B (DB, T1B, XN, CM, VB, SB)
F1=2.42*(DB/T1B)**(0.33+4.26*(T1B/DB)**0.33
F1=F1-4.18

FT2B=(F1/XN)**1.71*(CM/VB)**2.29*DB**1.7 1/SB*%

181

An Employee-Owned Company



182

RETURN
ECI:NID _
ceesvsaneone -
FUNCTION FT2P (RHOP,V RP,SY1 THB'I‘A,RHOI SY2,D,RHO2 TlP)
A=1.33*RHOP*(V*RP)**2. o =
B =8.0 *SY1 * EXP(-.0003125 * V)/COS(THETA) -
C=1.33*RHOP*RP*#20
D1 =RP * RHO1/ COS(THETA)
XK1=1.67*(RHOP/(2.¥SY2))**0.31 .. . =
XK 1=XK1%*(0.281*D*RHOP/RHO2)**0. 33 -
XK1 =XK1 * COS(THETA)
CilP1=(A-B*TIP)/(C+DI1 *T1P) =
IF (C1P1.LE.0.001) THEN -
FT2P =0.0
GOTO 999
END IF
FT2P=XK1*C1P1*%0.31
999 RETURN -
; w
[ —
C  SUBROUTINE MADDEN(V,D,RHOP,S,RHO,T1,T2,WT,WTCMC) ==
SUBROUTINE MADDEN(V, D, RHOP, S, RHO, T1,T2) —
V =V * 100000.0 -
T1=0.009*SQRT(V)*RHOP*D**2.0 =
T1=T1/(S*RHO**1.5) -
T2=TIl
RETURN —
END ' ]
| T ——
C  SUBROUTINE WILKINSON(V,D,RHOP,RHO1,RHO2,8 X2, =
& T1,T2,WT,WTCMO) - =
SUBROUTINE WILKINSON(V.D, RHOP RHOI1 RH02 S,XL2
& T1,T2)
T1=0.604*D**2 *RHOP/(S*RHO1) =
T1=T1*SQRT(V/XL2)
T2=T1*RHO!/RHO2 _
RATIO =D * RHOP/ (T1 * RHO1)
IF (RATIO.GT.1.0) GOTO 3683
IF(RATIO.LE.1.0)T2=T2/RATIO —
3683 CONTINUE =
RETURN
END -
C oememennen SR - -
##kkk MODIFIED BURCH ***¥x
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C  SUBROUTINE BURCH(V,D,RHO1,RHO2,S,THETA,
& XN,E1,T1,T2,WT,WTCMC)

SUBROUTINE BURCH(V,D,RHO1,RHO2,S,THETA,

& XN.E1,T1,T2,T1B,F1)

VB =V *3280.0
DB=D/254
CM = SQRT(E1/RHO1)
CM=CM/3048
SB=S/2.54
IF (THETA.LE.0.001) GOTO 425
CHI = TAN(THETA) - .5
F2=0.5-1.87*(T1B/D)+(5.*T1B/D-1.6)*CHI**3.0
F2=F2+(1.7-12.0 *T1B/D) * CHI
F3=0.32*(T1B/D)**0.83
F3=F3+0.48*(T1B/D)**0.33*(SIN(THETA))**3.0
T2F=D*((F1+0.63*F2)/XN)*(CM/V)**2.29
T2F=T2F*(D/S)**0.71
T2N=F3*(CM/V)**1.33*D/XN
IF(T2N.GE.T2F)T2B=T2N
IF(T2N.LT.T2F)T2B=T2F
T2B =T2B * 2.54
IF(T2B.GT.T2)NREGION=3
IF(T2B.GT.T2)T2=T2B
GOTO 499
425 CONTINUE
NITSB =0
XK1=(DB/XN)**1.71*(CM/VB)**2.29/SB**(0.71
VDELTA =0.0
DELTA3 = .52

1099 DELTA2=2.33%(1.-1.57*DELTA3)

DELTA1=1.33 * (2.0 * DELTA3-1.0)
VDELTA1=(1/DELTA1)**DELTA1*¥(2.8*XK1/(DELTA2*DB**0.57))

+ **DELTA2

VDELTA1=VDELTA1*(1.58*XK1*DB**0.57/DELTA3)**DELTA3
VDELTA1=VDELTA1*(RHO1**DELTA1)*(RHO2**(DELTA2+DELTA3))
IF (VDELTA1.LT.VDELTA) THEN
DELTAI = 1.33 * (2.0 * DELTA3 - 1.04)
T1=DELTA1 * VDELTA /RHO1
T2 = (VDELTA - T1 * RHO1) /RHO2
GOTO 499
ENDIF
VDELTA = VDELTAI
DELTA3 = DELTA3 + .02
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IF (DELTA3.GT.0.63) THEN
T1=DELTALI * VDELTA /RHO1
T2 =(VDELTA - T1 * RHO1) /RHO2
GOTO 499

ENDIF

GOTO 1099
499 CONTINUE

T1=T1*2.54

T2=T2*254

RETURN

END

SAIC
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